[1]冯娇娇,宋继科,毕宏生.形觉剥夺性近视的视网膜调控机制研究进展[J].眼科新进展,2023,43(9):736-741.[doi:10.13389/j.cnki.rao.2023.0148]
 FENG Jiaojiao,SONG Jike,BI Hongsheng.Advances in the retinal regulation mechanism of form-deprivation myopia[J].Recent Advances in Ophthalmology,2023,43(9):736-741.[doi:10.13389/j.cnki.rao.2023.0148]
点击复制

形觉剥夺性近视的视网膜调控机制研究进展/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
43卷
期数:
2023年9期
页码:
736-741
栏目:
文献综述
出版日期:
2023-09-05

文章信息/Info

Title:
Advances in the retinal regulation mechanism of form-deprivation myopia
作者:
冯娇娇宋继科毕宏生
250014 山东省济南市,山东中医药大学(冯娇娇,宋继科);250002 山东省济南市,山东中医药大学附属眼科医院,山东省眼病防治研究院,山东省中西医结合眼病防治重点实验室,山东省眼视光与青少年视力低下防控临床医学研究中心(宋继科,毕宏生)
Author(s):
FENG Jiaojiao1SONG Jike12BI Hongsheng2
1.Shandong University of Traditional Chinese Medicine,Jinan 250014,Shandong
2.Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine,Shandong Academy of Eye Disease Prevention and The-rapy,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases,Shandong Provincial Clinical Medical Research Center of Optometry and Adolescent Low Vision Prevention and Control, Jinan 250002,Shandong
关键词:
形觉剥夺性近视多巴胺视黄酸血管活性肠肽黑视蛋白组学技术
Keywords:
form-deprivation myopia dopamine retinoic acid vasoactive intestinal peptide melanopsin omics technology
分类号:
R778.1+1
DOI:
10.13389/j.cnki.rao.2023.0148
文献标志码:
A
摘要:
形觉剥夺性近视(FDM)是由于视网膜接收不到清晰的物像,从而导致眼轴异常伸长,进而诱导近视发生。由于上睑下垂、先天性白内障、角膜混浊和玻璃体积血等原因导致的形觉剥夺引发的近视,其机制可能与在动物模型上观察到的FDM的机制类似。动物模型的研究已经证明了眼部生长和屈光发育的视觉引导以及视网膜调控的存在。视网膜是首先感知异常视觉信号的组织,探讨FDM发生发展机制的关键在于阐明异常的视觉信号输入如何被视网膜所感知并产生相应的生理病理改变。目前的研究已经确定了如多巴胺、视黄酸、血管活性肠肽、黑视蛋白等视网膜神经递质以及视网膜离子外排机制的重要作用。基因组学、蛋白质组学、代谢组学等技术发展使得从宏观层面了解形觉剥夺时视网膜发生的整体改变成为可能,为进一步探究FDM的视网膜调控机制提供了重要的数据支持。
Abstract:
Form-deprivation myopia (FDM) is induced by the abnormal elongation of the eye axis due to the failure of the retina to receive clear object images. The mechanism of FDM triggered by ptosis, congenital cataract, corneal opacity, and vitreous hemorrhage may be similar to that observed in animal models with FDM. Studies on FDM animal models have demonstrated the existence of visual guidance on eye growth and refractive development as well as retinal regulation. The retina is the first to perceive abnormal visual signals; thus, to investigate the mechanism of FDM occurrence and development, it is crucial to clarify how the retina perceives abnormal visual signal input and produces the corresponding physiopathological changes. Current studies have identified the significance of retinal neurotransmitters such as dopamine, retinoic acid, vasoactive intestinal peptide, and melanopsin, as well as retinal ion efflux mechanisms. Technological development such as genomics, proteomics, and metabolomics has made it possible to understand the overall changes that occur in the retina during form deprivation at a macroscopic level, providing valuable data for further studies on the retinal regulation mechanisms of FDM.

参考文献/References:

[1] CHAKRABORTY R,OSTRIN L A,BENAVENTE-PEREZ A,VERKICHARLA P K.Optical mechanisms regulating emmetropisation and refractive errors:evidence from animal models[J].Clin Exp Optom,2020,103(1):55-67.
[2] HOWLETT M H C,MCFADDEN S A.Form-deprivation myopia in the guinea pig (Cavia porcellus)[J].Vision Res,2006,46(1-2):267-283.
[3] ZI Y X,DENG Y,ZHAO J R,JI M Q,QIN Y L,DENG T T,et al.Morphologic and biochemical changes in the retina and sclera induced by form deprivation high myopia in guinea pigs[J].BMC Ophthalmol,2020,20(1):105.
[4] GUL A,CINAL A,CAGLAR C,YASAR T,KILIC A.Comparing biometry in normal eyes of children with unilateral cataract/corneal disease to age-matched controls[J].Nepal J Ophthalmol,2015,7(14):108-116.
[5] MEYER C,MLLER M.Form deprivation myopia caused by keratitis scrophulosa[J].Ophthalmologe,1996,93(4):361-366.
[6] HSIA N Y,WEN L Y,CHOU C Y,LIN C L,WAN L,LIN H J.Increased risk of refractive errors and amblyopia among children with ptosis:a nationwide population-based study[J].J Clin Med,2022,11(9):2334.
[7] SHEN Y,ZHAO J,SUN L,ZENG L,CHEN Z,TIAN M,et al.The long-term observation in Chinese children with monocular myelinated retinal nerve fibers,myopia and amblyopia[J].Transl Pediatr,2021,10(4):860-869.
[8] WIESEL T N,RAVIOLA E.Myopia and eye enlargement after neonatal lid fusion in monkeys[J].Nature,1977,266(5597):66-68.
[9] SHERMAN S M,NORTON T T,CASAGRANDE V A.Myopia in the lid-sutured tree shrew (Tupaia glis)[J].Brain Res,1977,124(1):154-157.
[10] WALLMAN J,TURKEL J,TRACHTMAN J.Extreme myopia produced by modest change in early visual experience[J].Science,1978,201(4362):1249-1251.
[11] WILSON J R,SHERMAN S M.Differential effects of early monocular deprivation on binocular and monocular segments of cat striate cortex[J].J Neurophysiol,1977,40(4):891-903.
[12] VEROLINO M,NASTRI G,SELLITTI L,COSTAGLIOLA C.Axial length increase in lid-sutured rabbits[J].Surv Ophthalmol,1999,44(Suppl 1):S103-108.
[13] TEJEDOR J,DE L A VILLA P.Refractive changes induced by form deprivation in the mouse eye[J].Invest Ophthalmol Vis Sci,2003,44(1):32-36.
[14] WIESEL T N,RAVIOLA E.Increase in axial length of the macaque monkey eye after corneal opacification[J].Invest Ophthalmol Vis Sci,1979,18(12):1232-1236.
[15] HODOS W,KUENZEL W J.Retinal-image degradation produces ocular enlargement in chicks[J].Invest Ophthalmol Vis Sci,1984,25(6):652-659.
[16] LU F,ZHOU X T,ZHAO H L,WANG R Q,JIA D,JIANG L Q,et al.Axial myopia induced by a monocularly-deprived facemask in guinea pigs:a non-invasive and effective model[J].Exp Eye Res,2006,82(4):628-636.
[17] FAULKNER A E,KIM M K,IUVONE P M,PARDUE M T.Head-mounted goggles for murine form deprivation myopia[J].J Neurosci Methods,2007,161(1):96-100.
[18] SCHAEFFEL F,FELDKAEMPER M.Animal models in myopia research[J].Clin Exp Optom,2015,98(6):507-517.
[19] WALLMAN J,WILDSOET C,XU A,GOTTLIEB M D,NICKLA D L,MARRAN L,et al.Moving the retina:choroidal modulation of refractive state[J].Vision Res,1995,35(1):37-50.
[20] SMITH E L,HUNG L F,KEE C S,QIAO Y,et al.Effects of brief periods of unrestricted vision on the development of form-deprivation myopia in monkeys[J].Invest Ophthalmol Vis Sci,2002,43(2):291-299.
[21] TROILO D,SMITH E L,NICKLA D L,ASHBY R,TKATCHENKO A V,OSTRIN L A,et al.IMI-report on experimental models of emmetropization and myopia[J].Invest Ophthalmol Vis Sci,2019,60(3):m31-m88.
[22] SCHAEFFEL F,HOWLAND H C.Properties of the feedback loops controlling eye growth and refractive state in the chicken[J].Vision Res,1991,31(4):717-734.
[23] BOWREY H E,METSE A P,LEOTTA A J,ZENG G,MCFADDEN S A.The relationship between image degradation and myopia in the mammalian eye[J].Clin Exp Optom,2015,98(6):555-563.
[24] BROWN D M,MAZADE R,CLARKSON-TOWNSEND D,HOGAN K,DATTA ROY P M,PARDUE M T.Candidate pathways for retina to scleral signaling in refractive eye growth[J].Exp Eye Res,2022,219:109071.
[25] TROILO D,GOTTLIEB M D,WALLMAN J.Visual deprivation causes myopia in chicks with optic nerve section[J].Curr Eye Res,1987,6(8):993-999.
[26] MCFADDEN S A,WILDSOET C.The effect of optic nerve section on form deprivation myopia in the guinea pig[J].J Comp Neurol,2020,528(17):2874-2887.
[27] NIKOLAEVA D A,ASTAKHOVA L A,FIRSOV M L.The effects of dopamine and dopamine receptor agonists on the phototransduction cascade of frog rods[J].Mol Vis,2019,25:400-414.
[28] GAO A Y,LINK P A,BAKRI S J,HAAK A J.Dopamine receptor signaling regulates fibrotic activation of retinal pigmented epithelial cells[J].Am J Physiol Cell Physiol,2022,323(1):c116-c124.
[29] JANDOT A,CALLIGARO H,DKHISSI-BENYAHYA O.Endogenous functioning and light response of the retinal clock in vertebrates[J].Prog Brain Res,2022,273(1):49-69.
[30] GOEL M,MANGEL S C.Dopamine-mediated circadian and light/dark-adaptive modulation of chemical and electrical synapses in the outer retina[J].Front Cell Neurosci,2021,15:647541.
[31] REN X Q,ZHANG Q W,YANG J L,ZHANG X J,ZHANG X M,ZHANG Y T,et al.Dopamine imaging in living cells and retina by surface-enhanced raman scattering based on functionalized gold nanoparticles[J].Anal Chem,2021,93(31):10841-10849.
[32] THOMSON K,KAROUTA C,ASHBY R.Form-deprivation and lens-induced myopia are similarly affected by pharmacological manipulation of the dopaminergic system in chicks[J].Invest Ophthalmol Vis Sci,2020,61(12):4.
[33] THOMSON K,KAROUTA C,ASHBY R.Topical application of dopaminergic compounds can inhibit deprivation myopia in chicks[J].Exp Eye Res,2020,200:108233.
[34] LANDIS E G,CHRENEK M A,CHAKRABORTY R,STRICKLAND R,BERGEN M,YANG V,et al.Increased endogenous dopamine prevents myopia in mice[J].Exp Eye Res,2020,193:107956.
[35] ZHANG S,YANG J L,REINACH P S,WANG F J,ZHANG L S,FAN M M,et al.Dopamine receptor subtypes mediate opposing effects on form deprivation myopia in pigmented guinea pigs[J].Invest Ophthalmol Vis Sci,2018,59(11):4441-4448.
[36] HUANG F R,WANG Q S,YAN T T,TANG J,HOU X Q,SHU Z H,et al.The Role of the dopamine D2 receptor in form-deprivation myopia in mice:studies with full and partial D2 receptor agonists and knockouts[J].Invest Ophthalmol Vis Sci,2020,61(6):47.
[37] GHYSELINCK N B,DUESTER G.Retinoic acid signaling pathways[J].Development,2019,146(13):dev167502.
[38] POLLOCK L M,XIE J,BELL B A,ANAND-APTE B.Retinoic acid signaling is essential for maintenance of the blood-retinal barrier[J].FASEB J,2018,32(10):5674-5684.
[39] SEKO Y,SHIMIZU M,TOKORO T.Retinoic acid increases in the retina of the chick with form deprivation myopia[J].Ophthalmic Res,1998,30(6):361-367.
[40] MCFADDEN S A,HOWLETT M H C,MERTZ J R.Retinoic acid signals the direction of ocular elongation in the guinea pig eye[J].Vision Res,2004,44(7):643-653.
[41] TROILO D,NICKLA D L,MERTZ J R,SUMMERS RADA J A.Change in the synthesis rates of ocular retinoic acid and scleral glycosaminoglycan during experimentally altered eye growth in marmosets[J].Invest Ophthalmol Vis Sci,2006,47(5):1768-1777.
[42] HUANG J,QU X M,CHU R Y.Expressions of cellular retinoic acid binding proteins I and retinoic acid receptor-β in the guinea pig eyes with experimental myopia[J].Int J Ophthalmol,2011,4(2):131-136.
[43] 毛玉梅,兰长骏,杨琴,钟维琪,谷志明,周桂梅,等.视黄醇脱氢酶5在豚鼠形觉剥夺性近视眼中的表达变化[J].眼科新进展,2021,41(11):1011-1015.
MAO Y M,LAN C J,YANG Q,ZHONG W Q,GU Z M,ZHOU G M,et al.Differences of retinol dehydrogenase 5 expression in form-deprivation myopic eyes of guinea pigs[J].Rec Adv Ophthalmol,2021,41(11):1011-1015.
[44] ZHANG D R,DENG Z H,TAN J,LIU S R,HU S Y,TAO H,et al.All-trans retinoic acid stimulates the secretion of TGF-β2 via the phospholipase C but not the adenylyl cyclase signaling pathway in retinal pigment epithelium cells[J].BMC Ophthalmol,2019,19(1):23.
[45] SUMMERS J A,CANO E M,KASER-EICHBERGER A,SCHROEDL F.Retinoic acid synthesis by a population of choroidal stromal cells[J].Exp Eye Res,2020,201:108252.
[46] UMETSU Y,TENNO T,GODA N,SHIRAKAWA M,IKEGAMI T,HIROAKI H.Structural difference of vasoactive intestinal peptide in two distinct membrane-mimicking environments[J].Biochim Biophys Acta,2011,1814(5):724-730.
[47] LIU S Z,WANG H,JIANG J J,WANG P B,WU X Y,TAN X P,et al.Dynamic expression of VIPR2 in form deprivation myopia[J].Zhong Nan Da Xue Xue Bao Yi Xue Ban,2005,30(4):456-459.
[48] STONE R A,LATIES A M,RAVIOLA E,WIESEl T N.Increase in retinal vasoactive intestinal polypeptide after eyelid fusion in primates[J].Proc Natl Acad Sci U S A,1988,85(1):257-260.
[49] WANG P B,WANG H,LIU S Z,JIANG J J.Effect of vasoactive intestinal peptide receptor antagonist VIPhybrid on the development of form deprivation myopia in chicks[J].Zhong Nan Da Xue Xue Bao Yi Xue Ban,2008,33(8):669-675.
[50] MAO J F,LIU S Z.Mechanism of the DL-alpha-aminoadipic acid inhibitory effect on form-deprived myopia in guinea pig[J].Int J Ophthalmol,2013,6(1):19-22.
[51] ZHAO F X,LI Q H,CHEN W,ZHU H,ZHOU D K,REINACH P S,et al.Dysfunction of VIPR2 leads to myopia in humans and mice[J].J Med Genet,2022,59(1):88-100.
[52] LEUNG N Y,MONTELL C.Unconventional roles of opsins[J].Annu Rev Cell Dev Biol,2017,33:241-264.
[53] CHAKRABORTY R,OSTRIN L A,NICKLA D L,IUVONE P M,PARDUE M T,STONE R A.Circadian rhythms,refractive development,and myopia[J].Ophthalmic Physiol Opt,2018,38(3):217-245.
[54] LIU A L,LIU Y F,WANG G,SHAO Y Q,YU C X,YANG Z,et al.The role of ipRGCs in ocular growth and myopia development[J].Sci Adv,2022,8(23):eabm9027.
[55] CHAKRABORTY R,LANDIS E G,MAZADE R,YANG V,STRUCKLAND R,HATTAR S,et al.Melanopsin modulates refractive development and myopia[J].Exp Eye Res,2022,214:108866.
[56] CREWTHER D P.The role of photoreceptors in the control of refractive state[J].Prog Retin Eye Res,2000,19(4):421-457.
[57] BERESFORD J A,CREWTHER S G,KIELY P M,CREWTHER D P.Comparison of refractive state and circumferential morphology of retina,choroid,and sclera in chick models of experimentally induced ametropia[J].Optom Vis Sci,2001,78(1):40-49.
[58] LIANG H,CREWTHER S G,CREWTHER D P,JUNGHANS B M.Structural and elemental evidence for edema in the retina,retinal pigment epithelium,and choroid during recovery from experimentally induced myopia[J].Invest Ophthalmol Vis Sci,2004,45(8):2463-2474.
[59] CREWTHER S G,LIANG H,JUNGHANS B M,CREWTHER D P.Ionic control of ocular growth and refractive change[J].Proc Natl Acad Sci U S A,2006,103(42):15663-15668.
[60] YANG Q,TAN Q Q,LAN C J,L B Z,ZHOU G M,ZHONG W Q,et al.The Changes of KCNQ5 expression and potassium microenvironment in the retina of myopic guinea pigs[J].Front Physiol,2021,12:790580.
[61] GIUMMARRA L,CREWTHER S G,RIDDELL N,MURPHY M J,CREWTHER D P.Pathway analysis identifies altered mitochondrial metabolism,neurotransmission,structural pathways and complement cascade in retina/RPE/ choroid in chick model of form-deprivation myopia[J].Peer J,2018,6:e5048.
[62] VOCALE L G,CREWTHER S,RIDDELL N,HALL N E,MURPHY M,CREWTHER D.RNA-seq and GSEA identifies suppression of ligand-gated chloride efflux channels as the major gene pathway contributing to form deprivation myopia[J].Sci Rep,2021,11(1):5280.
[63] ZHU Y,BIAN J F,LU D Q,TO C H,LAM C S Y,LI K K,et al.Alteration of EIF2 signaling,glycolysis,and dopamine secretion in form-deprived myopia in response to 1% atropine treatment:evidence from interactive iTRAQ-MS and SWATH-MS proteomics using a guinea pig model[J].Front Pharmacol,2022,13:814814.
[64] MEI F,WANG J,CHEN Z,YUAN Z.Potentially important microRNAs in form-deprivation myopia revealed by bioinformatics analysis of microRNA profiling[J].Ophthalmic Res,2017,57(3):186-193.
[65] ZENG L,LI X N,LIU J,LIU H,XU H P,YANG Z K.RNA-seq analysis reveals an essential role of the tyrosine metabolic pathway and inflammation in myopia-induced retinal degeneration in guinea pigs[J].Int J Mol Sci,2021,22(22):12598.
[66] YANG J L,REINACH P S,ZHANG S,PAN M Z,SUN W F,LIU B,et al.Changes in retinal metabolic profiles associated with form deprivation myopia development in guinea pigs[J].Sci Rep,2017,7(1):2777.
[67] LIU S S,CHEN H J,MA W B,ZHONG Y Y,LIANG Y Y,GU L S,et al.Non-coding RNAs and related molecules associated with form-deprivation myopia in mice[J].J Cell Mol Med,2022,26(1):186-194.
[68] KUMAR K R,COWLEY M J,DAVIS R L.Next-generation sequencing and emerging technologies[J].Semin Thromb Hemost,2019,45(7):661-673.
[69] CHEN Y,GUO J.Multiplexed single-cell in situ protein profiling[J].ACS Meas Sci Au,2022,2(4):296-303.
[70] LONGO S K,GUO M G,JI A L,KHAVARI P A.Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics[J].Nat Rev Genet,2021,22(10):627-644.

相似文献/References:

[1]李勇子 刘桂香 王玲 隋爱玲 郭强强 万鲁芹.TIMP-2基因转染FDM豚鼠模型早期后极部巩膜中MMP-2的动态表达[J].眼科新进展,2012,32(12):000.
[2]李瑞凤 刘桂香 万鲁芹 颜晓萍 黄小凤 李勇子.TIMP-2基因转染 FDM 豚鼠后极部巩膜MMP-2蛋白早期动态表达[J].眼科新进展,2012,32(3):000.
[3]徐超立 吴建峰 毕宏生. 多巴胺在近视发生发展中的作用[J].眼科新进展,2014,34(1):086.
[4]王绮韵,庄菁,余克明.光强度与近视的关系及其机制的研究进展[J].眼科新进展,2016,36(10):984.[doi:10.13389/j.cnki.rao.2016.0264]
 WANG Qi-Yun,ZHUANG Jing,YU Ke-Ming.Recent advances in relationship between light intensity and myopia and its mechanisms[J].Recent Advances in Ophthalmology,2016,36(9):984.[doi:10.13389/j.cnki.rao.2016.0264]
[5]郭芳,魏瑞华,吴绵绵,等.近视动物模型及发病机制的研究进展[J].眼科新进展,2018,38(5):490.[doi:10.13389/j.cnki.rao.2018.0115]
 GUO Fang,WEI Rui-Hua,WU Mian-Mian,et al.Research advances in the animal models and pathogenic mechanisms of myopia[J].Recent Advances in Ophthalmology,2018,38(9):490.[doi:10.13389/j.cnki.rao.2018.0115]
[6]王雨薇,仇纯婷,张旭.户外蓝光抑制近视相关机制的研究进展[J].眼科新进展,2018,38(10):905.[doi:10.13389/j.cnki.rao.2018.0214]
 WANG Yu-Wei,QIU Chun-Ting,ZHANG Xu.Potential mechanisms of blue light outdoors against myopia[J].Recent Advances in Ophthalmology,2018,38(9):905.[doi:10.13389/j.cnki.rao.2018.0214]
[7]展欣,朱子诚,孙思勤,等.激活蛋白1(AP-1)在豚鼠进展性近视巩膜重塑中与I型胶原的表达关系研究[J].眼科新进展,2019,39(2):129.[doi:10.13389/j.cnki.rao.2019.0029]
 ZHAN Xin,ZHU Zi-Cheng,SUN Si-Qin,et al.Expression changes of activator protein 1 and its correlation with collagen Ⅰ in the sclera remodeling of progressive myopia in guinea pigs[J].Recent Advances in Ophthalmology,2019,39(9):129.[doi:10.13389/j.cnki.rao.2019.0029]
[8]郭芳,魏瑞华,孙笑笑,等.Cochlin及其编码基因凝血因子C同源物(COCH)在形觉剥夺性近视豚鼠眼球后极部组织的表达[J].眼科新进展,2019,39(3):201.[doi:10.13389/j.cnki.rao.2019.0046]
 GUO Fang,WEI Rui-Hua,SUN Xiao-Xiao,et al.Expression of Cochlin and its coding gene coagulation factor C homology (COCH) in the ocular posterior polar tissues of guinea pigs with form-deprived myopia[J].Recent Advances in Ophthalmology,2019,39(9):201.[doi:10.13389/j.cnki.rao.2019.0046]
[9]刘奇奇,高洪莲,刘蓓,等.康柏西普对豚鼠形觉剥夺性近视的干预作用及相关机制分析[J].眼科新进展,2020,40(8):722.[doi:10.13389/j.cnki.rao.2020.0164]
 LIU Qiqi,GAO Honglian,LIU Bei,et al.Effects of Conbercept on the form-deprivation myopia in guinea pigs and its related factors[J].Recent Advances in Ophthalmology,2020,40(9):722.[doi:10.13389/j.cnki.rao.2020.0164]
[10]张秀艳,毕爱玲,吴姗姗,等.电针刺激对单眼形觉剥夺弱视大鼠初级视皮层中多巴胺、γ-氨基丁酸及其受体mRNA表达的影响[J].眼科新进展,2020,40(12):1106.[doi:10.13389/j.cnki.rao.2020.0246]
 ZHANG Xiuyan,BI Ailing,WU Shanshan,et al.Effect of electroacupuncture on expression of dopamine, γ-aminobutyric acid and its receptor mRNA in primary visual cortex of monocular deprivation amblyopic rats[J].Recent Advances in Ophthalmology,2020,40(9):1106.[doi:10.13389/j.cnki.rao.2020.0246]
[11]邱宇,高洪莲,于睿,等.抗血管内皮生长因子玻璃体内注射对形觉剥夺性近视豚鼠视网膜中多巴胺水平的影响[J].眼科新进展,2022,42(2):113.[doi:10.13389/j.cnki.rao.2022.0023]
 QIU Yu,GAO Honglian,YU Rui,et al.Effect of intravitreal injection of anti-vascular endothelial growth factor on the dopamine level in the retina of guinea pigs with form deprivation myopia[J].Recent Advances in Ophthalmology,2022,42(9):113.[doi:10.13389/j.cnki.rao.2022.0023]
[12]孙瑞婷,高洪莲,张凤一,等.血管内皮生长因子-A165对形觉剥夺性近视豚鼠视网膜中多巴胺水平的影响[J].眼科新进展,2023,43(10):775.[doi:10.13389/j.cnki.rao.2023.0156]
 SUN Ruiting,GAO Honglian,ZHANG Fengyi,et al.Effects of vascular endothelial growth factor-A165 on the dopamine level in the retina of guinea pigs with form-deprivation myopia[J].Recent Advances in Ophthalmology,2023,43(9):775.[doi:10.13389/j.cnki.rao.2023.0156]

备注/Memo

备注/Memo:
国家重点研发计划(编号:2019YFC1710203)
更新日期/Last Update: 2023-08-30