[1]刘晓晖,徐静,吴京.糖原合成酶激酶3β(GSK3β)参与调控视网膜疾病的研究进展[J].眼科新进展,2022,42(2):159-163.[doi:10.13389/j.cnki.rao.2022.0033]
 LIU Xiaohui,XU Jing,WU Jing.Research progress of glycogen synthase kinase 3 beta in the regulation of retinal diseases[J].Recent Advances in Ophthalmology,2022,42(2):159-163.[doi:10.13389/j.cnki.rao.2022.0033]
点击复制

糖原合成酶激酶3β(GSK3β)参与调控视网膜疾病的研究进展/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
42卷
期数:
2022年2期
页码:
159-163
栏目:
文献综述
出版日期:
2022-02-05

文章信息/Info

Title:
Research progress of glycogen synthase kinase 3 beta in the regulation of retinal diseases
作者:
刘晓晖徐静吴京
510515 广东省广州市,南方医科大学南方医院眼科(刘晓晖,徐静);510515 广东省广州市,南方医科大学南方医院惠侨医疗中心(吴京)
Author(s):
LIU Xiaohui1XU Jing1WU Jing2
1.Department of Ophthalmology,Nanfang Hospital,Southern Medical University,Guangzhou 510515,Guangdong Province,China
2.Huiqiao Medical Center,Nanfang Hospital,Southern Medical University,Guangzhou 510515,Guangdong Province,China
关键词:
糖原合成酶激酶3β视网膜疾病病理机制
Keywords:
glycogen synthase kinase 3 beta retinal diseases pathological mechanisms
分类号:
R774.1
DOI:
10.13389/j.cnki.rao.2022.0033
文献标志码:
A
摘要:
视网膜疾病是视力丧失的常见原因,近年来受到社会的广泛关注。视网膜细胞在受到氧化应激、衰老等内外环境的刺激时,经历一系列的病理改变从而发生功能障碍。在受损的视网膜细胞中,糖原合成酶激酶3β(GSK3β)的活性发生了改变,通过介导细胞凋亡、血管新生等多种效应参与调控视网膜疾病的发生发展,干预GSK3β调节通路治疗视网膜疾病具有潜在临床意义。本文就多种视网膜疾病中GSK3β的活性调节机制进行综述。
Abstract:
Retinal disease is a common cause of vision loss and has received widespread attention in recent years. Retinal cells, when exposed to internal or external environmental stimuli such as oxidative stress and aging, will undergo a series of pathological changes and become dysfunctional. In the damaged retinal cells, glycogen synthase kinase 3 beta (GSK3β) is altered in activity and then regulates the development of retinal diseases by mediating apoptosis and angiogenesis. Regulation of GSK3β pathways has potential clinical significance in treating retinal diseases. This article reviews the regulation mechanisms of GSK3β activity in various retinal diseases.

参考文献/References:

[1] HUANG H,KAUR S,HU Y.Lab review:molecular dissection of the signal transduction pathways associated with PTEN deletion-induced optic nerve regeneration[J].Restor Neurol Neurosci,2019,37(6):545-552.
[2] AHMED Z,MORGAN-WARREN P J,BERRY M,SCOTT R,LOGAN A.Effects of siRNA-mediated knockdown of GSK3β on retinal ganglion cell survival and neurite/axon growth[J].Cells-Basel,2019,8(9):956.
[3] LEIBINGER M,ANDREADAKI A,GOLLA R,LEVIN E,HILLA A M,DIEKMANN H,et al.Boosting CNS axon regeneration by harnessing antagonistic effects of GSK3 activity[J].Proc Natl Acad Sci USA,2017,114(27):E5454-E5463.
[4] SIVAGURUNATHAN S,PALANISAMY K,ARUNACHALAM J P,CHIDAMBARAM S.Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway[J].Mol Cell Biochem,2017,427(1/2):145-156.
[5] HOFFMEISTER L,DIEKMANN M,BRAND K,HUBER R.GSK3:a kinase balancing promotion and resolution of inflammation[J].Cells-Basel,2020,9(4):820.
[6] BEUREL E,GRIECO S F,JOPE R S.Glycogen synthase kinase-3 (GSK3):regulation,actions,and diseases[J].Pharmacol Ther,2015,148:114-131.
[7] DEVI T S,SINGH L P,HOSOYA K,TERASAKI T.GSK-3β/CREB axis mediates IGF-1-induced ECM/adhesion molecule expression,cell cycle progression and monolayer permeability in retinal capillary endothelial cells:implications for diabetic retinopathy[J].Biochim Biophys Acta,2011,1812(9):1080-1088.
[8] EL-REMESSY A B,FRANKLIN T,GHALEY N,YANG J,BRANDS M W,CALDWELL R B,et al.Diabetes-induced superoxide anion and breakdown of the blood-retinal barrier:role of the VEGF/uPAR pathway[J].PLoS One,2013,8(8):e71868.
[9] YANG J,CALDWELL R B,BEHZADIAN M A.Blockade of VEGF-induced GSK/β-catenin signaling,uPAR expression and increased permeability by dominant negative p38α[J].Exp Eye Res,2012,100:101-108.
[10] ZHU H,ZHANG W,ZHAO Y,SHU X,WANG W,WANG D,et al.GSK3β-mediated tau hyperphosphorylation triggers diabetic retinal neurodegeneration by disrupting synaptic and mitochondrial functions[J].Mol Neurodegener,2018,13(1):62.
[11] SHU X S,ZHU H,HUANG X,YANG Y,WANG D,ZHANG Y,et al.Loss of β-catenin via activated GSK3β causes diabetic retinal neurodegeneration by instigating a vicious cycle of oxidative stress-driven mitochondrial impairment[J].Aging (Albany NY),2020,12(13):13437-13462.
[12] YING Y,ZHANG Y L,MA C J,LI M Q,TANG C Y,YANG Y F,et al.Neuroprotective effects of ginsenoside Rg1 against hyperphosphorylated tau-induced diabetic retinal neurodegeneration via activation of IRS-1/Akt/GSK3β signaling[J].J Agric Food Chem,2019,67(30):8348-8360.
[13] SHU X,ZHANG Y,LI M,HUANG X,YANG Y,ZENG J,et al.Topical ocular administration of the GLP-1 receptor agonist liraglutide arrests hyperphosphorylated tau-triggered diabetic retinal neurodegeneration via activation of GLP-1R/Akt/GSK3β signaling[J].Neuropharmacology,2019,153:1-12.
[14] SZABADFI K,SZABO A,KISS P,REGLODI D,SETALO G J,KOVACS K,et al.PACAP promotes neuron survival in early experimental diabetic retinopathy[J].Neurochem Int,2014,64:84-91.
[15] MILLN I,DESCO M,TORRES-CUEVAS I,PREZ S,PULIDO I,MENA-MOLL S,et al.Pterostilbene prevents early diabetic retinopathy alterations in a rabbit experimental model[J].Nutrients,2019,12(1):82.
[16] MILLER W P,SUNILKUMAR S,GIORDANO J F,TORO A L,BARBER A J,DENNIS M D.The stress response protein REDD1 promotes diabetes-induced oxidative stress in the retina by Keap1-independent Nrf2 degradation[J].J Biol Chem,2020,295(21):7350-7361.
[17] EBRAHIMI K B,CANO M,RHEE J,DATTA S,WANG L,HANDA J T.Oxidative stress induces an interactive decline in Wnt and Nrf2 signaling in degenerating retinal pigment epithelium[J].Antioxid Redox Signal,2018,29(4):389-407.
[18] BAEK S M,YU S Y,SON Y,HONG H S.Substance P promotes the recovery of oxidative stress-damaged retinal pigmented epithelial cells by modulating Akt/GSK-3β signaling[J].Mol Vis,2016,22:1015-1023.
[19] KUO S C,CHIO C C,YEH C H,MA J T,LIU W P,LIN M T,et al.Mesenchymal stem cell-conditioned medium attenuates the retinal pathology in amyloid-β-induced rat model of Alzheimer’s disease:underlying mechanisms[J].Aging Cell,2021:e13340.
[20] AMBEGAOKAR S S,JACKSON G R.Functional genomic screen and network analysis reveal novel modifiers of tauopathy dissociated from tau phosphorylation[J].Hum Mol Genet,2011,20(24):4947-4977.
[21] STEINDL-KUSCHER K,BOULTON M E,HAAS P,DOSSENBACH-GLANINGER A,FEICHTINGER H,BINDER S.Epidermal growth factor:the driving force in initiation of RPE cell proliferation[J].Graefes Arch Clin Exp Ophthalmol,2011,249(8):1195-1200.
[22] ITO A,YE K,ONDA M,MORIMOTO N,OSAKADA F.Efficient and robust induction of retinal pigment epithelium cells by tankyrase inhibition regardless of the differentiation propensity of human induced pluripotent stem cells[J].Biochem Biophys Res Commun,2021,552:66-72.
[23] WANG Y,SANG A,ZHU M,ZHANG G,GUAN H,JI M,et al.Tissue factor induces VEGF expression via activation of the Wnt/β-catenin signaling pathway in ARPE-19 cells[J].Mol Vis,2016,22:886-897.
[24] HOU X,KUMAR A,LEE C,WANG B,ARJUNAN P,DONG L,et al.PDGF-CC blockade inhibits pathological angiogenesis by acting on multiple cellular and molecular targets[J].Proc Natl Acad Sci USA,2010,107(27):12216-12221.
[25] HOANG M V,SMITH L E,SENGER D R.Moderate GSK-3β inhibition improves neovascular architecture,reduces vascular leakage,and reduces retinal hypoxia in a model of ischemic retinopathy[J].Angiogenesis,2010,13(3):269-277.
[26] TABAK S,SCHREIBER-AVISSAR S,BEIT-YANNAI E.Extracellular vesicles have variable dose-dependent effects on cultured draining cells in the eye[J].J Cell Mol Med,2018,22(3):1992-2000.
[27] WU J H,ZHANG S H,GAO F J,LEI Y,CHEN X Y,GAO F,et al.RNAi screening identifies GSK3β as a regulator of DRP1 and the neuroprotection of lithium chloride against elevated pressure involved in downregulation of DRP1[J].Neurosci Lett,2013,554:99-104.
[28] ZHANG C,WANG Z,ZHAO J,LI Q,HUANG C,ZHU L,et al.Neuroprotective effect of lutein on NMDA-induced retinal ganglion cell injury in rat retina[J].Cell Mol Neurobiol,2016,36(4):531-540.
[29] HAYASHI H,EGUCHI Y,FUKUCHI-NAKAISHI Y,TAKEYA M,NAKAGATA N,TANAKA K,et al.A potential neuroprotective role of apolipoprotein E-containing lipoproteins through low density lipoprotein receptor-related protein 1 in normal tension glaucoma[J].J Biol Chem,2012,287(30):25395-25406.
[30] YAO K,QIU S,TIAN L,SNIDER W D,FLANNERY J G,SCHAFFER D V,et al.Wnt regulates proliferation and neurogenic potential of Müller glial cells via a Lin28/let-7 miRNA-dependent pathway in adult mammalian retinas[J].Cell Rep,2016,17(1):165-178.
[31] ZHANG C,SU L,HUANG L,SONG Z Y.GSK3β inhibits epithelial-mesenchymal transition via the Wnt/β-catenin and PI3K/Akt pathways[J].Int J Ophthalmol,2018,11(7):1120-1128.
[32] SHUKAL D,BHADRESHA K,SHASTRI B,MEHTA D,VASAVADA A,JOHAR K S.Dichloroacetate prevents TGFβ-induced epithelial-mesenchymal transition of retinal pigment epithelial cells[J].Exp Eye Res,2020,197:108072.
[33] HUANG L,ZHANG C,SU L,SONG Z.GSK3β attenuates TGF-β1 induced epithelial-mesenchymal transition and metabolic alterations in ARPE-19 cells[J].Biochem Biophys Res Commun,2017,486(3):744-751.
[34] LAVOIE J,HBERT M,BEAULIEU J M.Glycogen synthase kinase-3 overexpression replicates electroretinogram anomalies of offspring at high genetic risk for schizophrenia and bipolar disorder[J].Biol Psychiatry,2014,76(2):93-100.
[35] PREZLEN J A,OSORIO-PAZ I,FRANCOIS L,SALCEDA R.Immunohistochemical localization of glycogen synthase and GSK3β:control of glycogen content in retina[J].Neurochem Res,2013,38(5):1063-1069.
[36] RAJALA A,GUPTA V K,ANDERSON R E,RAJALA R V.Light activation of the insulin receptor regulates mitochondrial hexokinase.A possible mechanism of retinal neuroprotection[J].Mitochondrion,2013,13(6):566-576.
[37] WYSE J A,COTTER T G.The synthetic progesterone Norgestrel is neuroprotective in stressed photoreceptor-like cells and retinal explants,mediating its effects via basic fibroblast growth factor,protein kinase A and glycogen synthase kinase 3β signalling[J].Eur J Neurosci,2016,43(7):899-911.
[38] WANG B,HU C,YANG X,DU F,FENG Y,LI H,et al.Inhibition of GSK-3β activation protects SD rat retina against N-methyl-N-nitrosourea-induced degeneration by modulating the Wnt/β-catenin signaling pathway[J].J Mol Neurosci,2017,63(2):233-242.
[39] CARULLO G,FEDERICO S,RELITTI N,GEMMA S,BUTINI S,CAMPIANI G.Retinitis pigmentosa and retinal degenerations:deciphering pathways and targets for drug discovery and development[J].Acs Chem Neurosci,2020,11(15):2173-2191.
[40] MORGAN-WARREN P J,BERRY M,AHMED Z,SCOTT R A,LOGAN A.Exploiting mTOR signaling:a novel translatable treatment strategy for traumatic optic neuropathy?[J].Invest Ophthalmol Vis Sci,2013,54(10):6903-6916.
[41] ZHANG J,YANG D,HUANG H,SUN Y,HU Y.Coordination of necessary and permissive signals by PTEN inhibition for CNS axon regeneration[J].Front Neurosci,2018,12:558.
[42] KONDO S,TAKAHASHI K,KINOSHITA Y,NAGAI J,WAKATSUKI S,ARAKI T,et al.Genetic inhibition of CRMP2 phosphorylation at serine 522 promotes axonal regeneration after optic nerve injury[J].Sci Rep,2019,9(1):7188.
[43] HUANG C J,LIN S,AI L Q,YE J,YUAN R D.MicroRNA-30b regulates the polarity of retinal ganglion cells by inhibiting semaphorin-3A[J].Mol Vis,2019,25:722-730.

相似文献/References:

[1]付校楠 彭惠.眼底自发荧光技术在部分视网膜疾病中的应用进展[J].眼科新进展,2013,33(4):000.
[2]李筱荣.干细胞在视网膜疾病中的应用研究进展[J].眼科新进展,2013,33(10):000.
[3]孙荧,李颖,范丹.自噬与视网膜疾病的研究现状[J].眼科新进展,2016,36(5):494.[doi:10.13389/j.cnki.rao.2016.0132]
 SUN Ying,LI Ying,FAN Dan.Recent advances in autophagy and retinal diseases[J].Recent Advances in Ophthalmology,2016,36(2):494.[doi:10.13389/j.cnki.rao.2016.0132]
[4]王松涛,周国民.诱导多能干细胞在视网膜疾病研究中的应用[J].眼科新进展,2017,37(6):587.[doi:10.13389/j.cnki.rao.2017.0149]
 WANG Song-Tao,ZHOU Guo-Min.Application of induced pluripotent stem cells in retinal diseases[J].Recent Advances in Ophthalmology,2017,37(2):587.[doi:10.13389/j.cnki.rao.2017.0149]
[5]陶天畅,李根林.牛磺酸生物学特性及其在视网膜病变治疗中的应用[J].眼科新进展,2018,38(2):179.[doi:10.13389/j.cnki.rao.2018.0041]
 TAO Tian-Chang,LI Gen-Lin.Taurine for the treatment of retinopathy and its biochemical features[J].Recent Advances in Ophthalmology,2018,38(2):179.[doi:10.13389/j.cnki.rao.2018.0041]
[6]王智,邵威,袁学双,等.Wnt信号通路蛋白β-链蛋白和糖原合成酶激酶3β在单眼形觉剥夺性弱视大鼠视皮层的表达变化[J].眼科新进展,2019,39(9):825.[doi:10.13389/j.cnki.rao.2019.0187]
 WANG Zhi,SHAO Wei,YUAN Xue-Shuang,et al.Expression of correlation factors glycogen synthase kinase 3β and β-catenin of Wnt signal pathway in visual cortex of monocular form deprivation amblyopic rats[J].Recent Advances in Ophthalmology,2019,39(2):825.[doi:10.13389/j.cnki.rao.2019.0187]
[7]许雲,何媛.程序性坏死与视网膜疾病相关性的研究进展[J].眼科新进展,2020,40(3):284.[doi:10.13389/j.cnki.rao.2020.0067]
 XU Yun,HE Yuan.Research advance on the correlation between programmed necrosis and retinal diseases[J].Recent Advances in Ophthalmology,2020,40(2):284.[doi:10.13389/j.cnki.rao.2020.0067]
[8]惠靖雯,陈伟,季中琨,等.微脉冲阈值下半导体激光在视网膜疾病中的应用研究进展[J].眼科新进展,2020,40(6):597.[doi:10.13389/j.cnki.rao.2020.0137]
 HUI Jingwen,CHEN Wei,JI Zhongkun,et al.Progress and application of subthreshold diode micropulse laser in retinal diseases[J].Recent Advances in Ophthalmology,2020,40(2):597.[doi:10.13389/j.cnki.rao.2020.0137]
[9]周紫依,游志鹏.基因编辑治疗视网膜疾病的研究进展[J].眼科新进展,2021,41(5):495.[doi:10.13389/j.cnki.rao.2021.0103]
 ZHOU Ziyi,YOU Zhipeng.Research progress of gene editing for retinal diseases[J].Recent Advances in Ophthalmology,2021,41(2):495.[doi:10.13389/j.cnki.rao.2021.0103]
[10]姜百慧,项开来,秦秀虹,等.深度学习在视网膜疾病中的应用[J].眼科新进展,2021,41(7):688.[doi:10.13389/j.cnki.rao.2021.0143]
 JIANG Baihui,XIANG Kailai,QIN Xiuhong,et al.Progress in the application of deep learning in retinal diseases[J].Recent Advances in Ophthalmology,2021,41(2):688.[doi:10.13389/j.cnki.rao.2021.0143]

备注/Memo

备注/Memo:
广东省科技计划项目(编号:2017A020211005);广州市科技计划项目(编号:202102020527);南方医科大学南方医院院长基金(编号:2020C008)
更新日期/Last Update: 2022-02-05