[1]梁秀玮,何梦梅,蔡雯婷,等.缓激肽对转化生长因子-β1(TGF-β1)诱导视网膜色素上皮细胞发生上皮间充质转化的影响[J].眼科新进展,2018,38(11):1005-1009.[doi:10.13389/j.cnki.rao.2018.0237]
 LIANG Xiu-Wei,HE Meng-Mei,CAI Wen-Ting,et al.Effects of bradykinin on TGF-β1-induced epithelial-mesenchymal transformation in ARPE-19 cells[J].Recent Advances in Ophthalmology,2018,38(11):1005-1009.[doi:10.13389/j.cnki.rao.2018.0237]
点击复制

缓激肽对转化生长因子-β1(TGF-β1)诱导视网膜色素上皮细胞发生上皮间充质转化的影响/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
38卷
期数:
2018年11期
页码:
1005-1009
栏目:
实验研究
出版日期:
2018-11-05

文章信息/Info

Title:
Effects of bradykinin on TGF-β1-induced epithelial-mesenchymal transformation in ARPE-19 cells
作者:
梁秀玮何梦梅蔡雯婷张瑞玲金惠子范佳淇于靖
330031 江西省南昌市,南昌大学(梁秀玮,于靖);200072 上海市,同济大学附属上海市第十人民医院眼科(何梦梅,蔡雯婷,张瑞玲,金惠子,范佳淇)
Author(s):
LIANG Xiu-WeiHE Meng-MeiCAI Wen-TingZHANG Rui-LingJIN Hui-ZiFAN Jia-QiYU Jing
Nanchang University(LIANG Xiu-Wei,YU Jing),Nanchang 330031,Jiangxi Province,China;Department of Ophthalmology,the Tenth People’s Hospital,Tongji University(HE Meng-Mei,CAI Wen-Ting,ZHANG Rui-Ling,JIN Hui-Zi,FAN Jia-Qi),Shanghai 200072,China
关键词:
缓激肽转化生长因子-β1视网膜色素上皮细胞上皮间充质转化
Keywords:
BradykininTGF-β1Retinal pigmental epitheliumepithelial-mesenchymal transformation
分类号:
R774
DOI:
10.13389/j.cnki.rao.2018.0237
文献标志码:
A
摘要:
目的 制作增生性玻璃体视网膜病变(proliferative vitreoretinopathy,PVR)的上皮间充质转化(epithelial-mesenchymal transformation,EMT)细胞模型,研究缓激肽(bradykinin,BK)对视网膜色素上皮(retinal pigment epithelium,RPE)细胞发生EMT的影响,并探讨BK对PVR的影响机制。方法 体外培养人RPE细胞株ARPE-19细胞,采用不同浓度转化生长因子-β1(transforming growth factor- β1,TGF- β1)分别作用于ARPE-19细胞24 h、48 h,于倒置显微镜下观察细胞形态变化;采用CCK-8检测细胞增殖情况,确定TGF-β1浓度及作用时间;利用Western blot和细胞免疫荧光检测EMT标志蛋白E-钙黏素、α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)和波形蛋白(Viminten)表达情况;细胞划痕实验、Transwell实验检测细胞迁移能力。同时采用Western blot检测TGF/Smad通路下游pSmad3和Smad7的表达。结果 TGF- β1刺激ARPE-19细胞后可以成功诱导EMT体外细胞模型。当TGF-β1浓度为10 μg·L-1、作用时间为48 h时,细胞增殖最明显。BK在TGF- β1诱导的EMT中可以降低α-SMA、Viminten的表达,升高E-钙黏素的表达并且降低细胞迁移能力。这些影响能被BK-2受体拮抗剂HOE-140逆转。TGF-β1诱导ARPE-19细胞发生EMT时,pSmad3表达量升高;TGF-β1刺激前给予BK刺激,pSmad3表达量减少;加入BK前预敷HOE-140,然后给予TGF-β1刺激,BK作用减弱,pSmad3表达量升高。Smad7表达趋势与pSmad3表达趋势相反。结论 10 μg·L-1 TGF-β1可导致ARPE-19细胞发生EMT。BK通过TGF-/Smad信号通路上调Smad 7的表达、下调pSmad 3的表达,从而逆转TGF-β1诱导的EMT。提示BK可能是一种新的、有效的治疗PVR的方法。
Abstract:
Objective To establish the epithelial-mesenchymal transition (EMT) in vitro model of proliferative vitreoretinopathy (PVR),and to study the effects of bradykinin (BK) on EMT of retinal pigmental epithelium (RPE) and the relevant mechanism in PVR for providing a new target on treating PVR clinically.Methods Human PRE cell line ARPE-19 was treated with different concentrations of transforming growth factor-β1 (TGF-β1) at 24 h and 48 h,respectively,and the cell morphology was observed.CCK-8 methods was applied to detect the cell proliferation and to determine the prominent concentration and application time of TGF-β1 on APRE-19 cells.The proteins expression of EMT marker such as E-cadherin,α-SMA and Viminten was determined through Western blot and cellular immunofluorescence.The cell migration was detected by cell wounding heal and transwell assays.Western blot was used to detect the phosphorylation levels of Smad 3 and Smad 7,which were downstream signals of TGF-β1/Smad signaling pathway.Results The in vitro ARPE-19 cell model was successfully established with stimulation of 10 μg·L-1 of TGF-β1.BK could decrease the EMT markers α-SMA and Viminten protein levels while up-regulated the E-cadherin protein expression.Besides,BK also inhibited the cells migration ability.Conversely,the BK-2 receptor antagonist H0E-140 could reverse the BK-induced biological effects on ARPE-19 cells.Furthermore,BK suppressed p-Smad 3 and promoted p-Smad 7 expressions via TGF-β1/Smad pathway to reverse TGF-β1-mediated EMT.Conclusion TGF-β1 with 10 μg·L-1 can facilitate ARPE-19 cells’ EMT process while BK treatment acts as negatively in TGF-β1-induced EMT.BK also regulates the TGF-β1/Smad signaling pathway with upregulation of Smad 7 expression and downregulation of Smad 3 expression,thus circumventing the TGF-β1-induced EMT.This study suggests that BK can be a new therapeutic method for PVR.

参考文献/References:

[1] TOSI G M,MARIGLIANI D,ROMEO N,TOTI P.Disease pathways in proliferative vitreoretinopathy:an ongoing challenge[J].Cell Physiol,2014,229(11):1577-1583.
[2] MOUSTAKAS A,PARDALI K,GAAL A,HELDIN C H.Mechanisms of TGF-beta signaling inregulation of cell growth and differentiation[J].Immunol Lett,2002,82(1-2):85-91.
[3] HOERSTER R,MUETHER P S,VIERKOTTEN S,HERMANN M M,KIRCHHOF B,FAUSER S.Upregulation of TGF-β1 in experimental proliferative vitreoretinopathy is accompanied by epithelial to mesenchymal transition[J].Graefes Arch Clin Exp Ophthalmol,2014,252(1):11-16.
[4] LIANG C M,TAI M C,CHANG Y H,CHEN Y H,CHEN C L,LU D W,et al.Glucosamine inhibits epithelial-to-mesenchymal transition and migration of retinal pigment epithelium cells in culture and morphologic changes in a mouse model of proliferative vitreoretinopathy[J].Acta Ophthalmol,2011,89(6):e505-514.
[5] NASSAR K,GRISANTI S,TURA A,LKE J,LKE M,SOLIMAN M,et al.A TGF-beta receptor 1 inhibitor for prevention of proliferative vitreoretinopathy[J].Exp Eye Res,2014,123(1):72-86.
[6] YU J,PENG R,CHEN H,CUI C,BA J.Elucidation of the pathogenic mechanism of rhegmatogenous retinal detachment with proliferative vitreoretinopathy by proteomic analysis[J].Invest Ophthalmol Vis Sci,2012,53(13):8146-8153.
[7] ZHAO H M,YU J,SHENG M J.Experimental study on the role of kininogen-kinin system in the formation of proliferative vitreoretinopathy[J].Chin J Exp Ophthalmol,2011,29(7):591-595.
赵红梅,于靖,盛敏杰.激肽原-激肽系统参与增生性玻璃体视网膜病变形成的实验研究[J].中华实验眼科杂志,2011,29(7):591-595.
[8] SAIKA S,YAMANAKA O,OKADA Y,TANAKA S,MIYAMOTO T,SUMIOKA T,et al.TGF-β in fibroproliferative diseases in the eye[J].Front Biosci (Schol Ed),2009,1:376-390.
[9] BAI Y,LU H,LIN C,XU Y,HU D,LIANG Y,et al.Sonic hedgehog-mediated epithelial-mesenchymal transition in renal tubulointerstitial fibrosis[J].Int J Mol Med,2016,37(5):1317-1327.
[10] ZHAO Y L,ZHU R T,SUN Y L.Epithelial-mesenchymal transition in liver fibrosis[J].Biomed Rep,2016,4(3):269-274.
[11] DVASHI Z,GOLDBERG M,ADIR O,SHAPIRA M,POLLACK A.TGF-beta1 induced transdifferentiation of RPE cells is mediated by TAK1[J].PLoS One,2015,10(4):e0122229.
[12] SAIKA S,KONO-SAIKA S,TANAKA T,YAMANAKA O,OHNISHI Y,SATO M,et al.Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice[J].Lab Invest,2004,84(10):1245-1258.
[13] KOECK S,AMANN A,HUBER J M,GAMERITH G,HILBE W,ZWIERZINA H.The impact of metformin and salinomycin on transforming growth factor β-induced epithelial-to-mesenchymal transition in non-small cell lung cancer cell lines[J].Oncol Lett,2016,11(4):2946-2952.
[14] YANG S,YAO H,LI M,LI H,WANG F.Long non-coding RNA MALAT1 mediates transforming growth factor beta1-induced epithelial-mesenchymal transition of retinal pigment epithelial cells[J].PLoS One,2016,11(3):e0152687.
[15] MASSZI A,FAN L,ROSIVALL L,MCCULLOCH C A,ROTSTEIN O D,MUCSI I,et al.Integrity of cell-cell contacts is a critical regulator of TGF-beta 1 induced epithelial-to-myofibroblast transition:role for beta-catenin[J].Am J Pathol,2004,165(6):1955-1967.
[16] PALMA-NICOLS J P,LPEZ-COLOM A M.Thrombin induces slug-mediated E-cadherin transcriptional repression and the parallel up-regulation of N-cadherin by a transcription-independent mechanism in RPE cells[J].J Cell Physiol,2013,228(3):581-589.
[17] PRIGLINGER C S,PRIGLINGER S.Pharmacological approach to treatment of proliferative vitreoretinopathy[J].Ophthalmology,2013,110(10):948-959.
[18] YU J,PENG R,CHEN H.Kininogen 1 and insulin-like growth factor binding protein 6:candidate serum biomarkers of proliferative vitreoretinopathy[J].Clin Exp Optom,2014,97(1):72-79.
[19] HE S,KUMA S R,ZHOU P,KRASNOPEROV V,RYAN S J,GILL P S,et al.Soluble EphB4 inhibition of PDGF-induced RPE migration in vitro[J].Invest Ophthalmol Vis Sci,2010,51(1):543-552.
[20] SAITOH M,MIYAZAWA K.Transcriptional and post-transcri-ptional regulation in TGF-β-mediated epithelial-mesenchymal transition[J].Biochem,2012,151(6):563-571.
[21] CHOI K,LEE K,RYU S W,IM M,KOOK K H,CHOI C.Pirfenidone inhibits transforming growth factor - beta1-induced fibrogenesis by blocking nuclear translocation of Smads in human retinal pigment epithelial cell line ARPE-19[J].Mol Vis,2012,18:1010-1020.
[22] SAIKA S,KONO-SAIKA S,TANAKA T,YAMANAKA O,OHNISHI Y,SATO M,et al.Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice[J].Lab Invest,2004,84(10):1245-1258.
[23] CRDENAS A,CAMPOS J,EHRENFELD P,MEZZANO S,RUIZ-ORTEGA M,FIGUEROA C D,et al.Up-regulation of the kinin B2 receptor pathway modulates the TGF-β/Smad signaling cascade to reduce renal fibrosis induced by albumin[J].Peptides,2015,73(1):7-19.
[24] SAIKA S,YAMANAKA O,NISHIKAWA-ISHIDA I,KITANO A,FLANDERS K C,OKADA Y,et al.Effect of Smad7 gene overexpression on transforming growth factor beta-induced retinal pigment fibrosis in a proliferative vitreoretinopathy mouse mode[J].Arch Ophthalmol,2007,125(5):647-654.

相似文献/References:

[1]衡欣 陈悦.增生型糖尿病视网膜病变患者血清中转化生长因子-β1和结缔组织生长因子水平的变化及意义[J].眼科新进展,2013,33(4):000.
[2]陈艳蕾 郭海科 张洪洋 孟倩丽.兔Epi-LASIK上皮瓣弃留对角膜基质TGF-β1、bFGF表达及细胞凋亡的影响[J].眼科新进展,2013,33(12):000.
[3]陆燕,黄媛媛,蔡季平,等. SB431542和TGF-β1对甲状腺相关性眼病患者眼眶成纤维细胞α-SMA及CTGF基因表达的影响[J].眼科新进展,2015,35(3):210.[doi:10.13389/j.cnki.rao.2015.0057]
 LU Yan,HUANG Yuan-Yuan,CAl Ji-Ping,et al. Effects of SB431542 and TGF-B1 0n a-SMA and CTGF gene expression in orbital fibroblast of patients with thyroid-associated ophthalmolopathy[J].Recent Advances in Ophthalmology,2015,35(11):210.[doi:10.13389/j.cnki.rao.2015.0057]
[4]贺李娴,邵毅,邹雪香,等.缓激肽对体外培养兔角膜内皮细胞增殖状况及对闭锁小带蛋白-1与相关性核酸结合蛋白表达的影响[J].眼科新进展,2018,38(2):116.[doi:10.13389/j.cnki.rao.2018.0025]
 HE Li-Xian,SHAO Yi,ZOU Xue-Xiang,et al.Effects of bradykinin on the proliferation of rabbit corneal endothelial cells and the expression of tight junction-related proteins ZO-1 and ZONAB[J].Recent Advances in Ophthalmology,2018,38(11):116.[doi:10.13389/j.cnki.rao.2018.0025]
[5]胡红利,肖中举.丹参酮ⅡA对人角膜基质细胞纤维化的抑制作用[J].眼科新进展,2018,38(12):1114.[doi:10.13389/j.cnki.rao.2018.0263]
 HU Hong-Li,XIAO Zhong-Ju.Inhibitory effect of tanshinone ⅡA on fibrosis of human corneal stromal cells[J].Recent Advances in Ophthalmology,2018,38(11):1114.[doi:10.13389/j.cnki.rao.2018.0263]
[6]展欣,朱子诚,孙思勤,等.激活蛋白1(AP-1)在豚鼠进展性近视巩膜重塑中与I型胶原的表达关系研究[J].眼科新进展,2019,39(2):129.[doi:10.13389/j.cnki.rao.2019.0029]
 ZHAN Xin,ZHU Zi-Cheng,SUN Si-Qin,et al.Expression changes of activator protein 1 and its correlation with collagen Ⅰ in the sclera remodeling of progressive myopia in guinea pigs[J].Recent Advances in Ophthalmology,2019,39(11):129.[doi:10.13389/j.cnki.rao.2019.0029]
[7]易琼,邹文进.不同浓度多西环素对碱烧伤大鼠角膜中转化生长因子β1和基质金属蛋白酶9表达的影响[J].眼科新进展,2019,39(5):401.[doi:10.13389/j.cnki.rao.2019.0092]
 YI Qiong,ZOU Wen-Jin.Effects of different concentrations of doxycycline on the expression of transforming growth factor-β1 and matrix metalloproteinase-9 in alkali-burnt corneas of rats[J].Recent Advances in Ophthalmology,2019,39(11):401.[doi:10.13389/j.cnki.rao.2019.0092]
[8]朱子诚,展欣,张楚,等.转录活性蛋白1在实验性近视眼豚鼠巩膜重塑中对I型胶原表达的调控作用[J].眼科新进展,2019,39(5):415.[doi:10.13389/j.cnki.rao.2019.0095]
 ZHU Zi-Cheng,ZHAN Xin,ZHANG Chu,et al.Effect of specificity protein 1 (Sp1)transcription factor on the expression of type I collagen in sclera remodeling of experimentally myopic guinea pigs[J].Recent Advances in Ophthalmology,2019,39(11):415.[doi:10.13389/j.cnki.rao.2019.0095]
[9]隋文君,高洪莲,刘奇奇,等.PPAR-γ受体激动剂罗格列酮对兔准分子激光角膜切削术后角膜上皮下雾状混浊的影响[J].眼科新进展,2019,39(8):732.[doi:10.13389/j.cnki.rao.2019.0167]
 SUI Wen-Jun,GAO Hong-Lian,LIU Qi-Qi,et al.Effects of peroxisome proliferator-activated receptor gamma agonist rosiglitazone on corneal haze after photorefractive keratectomy in rabbits[J].Recent Advances in Ophthalmology,2019,39(11):732.[doi:10.13389/j.cnki.rao.2019.0167]
[10]樊芳,马清敏,赵智华,等.K115对TGF-β1诱导的人Tenon 囊成纤维细胞增殖和迁移的影响及其机制[J].眼科新进展,2021,41(4):301.[doi:10.13389/j.cnki.rao.2021.0063]
 FAN Fang,MA Qingmin,ZHAO Zhihua,et al.Effects of Rho protein kinase inhibitor K115 on proliferation and migration of human Tenon’s fibroblasts induced by TGF-β1 and its mechanisms[J].Recent Advances in Ophthalmology,2021,41(11):301.[doi:10.13389/j.cnki.rao.2021.0063]

备注/Memo

备注/Memo:
国家自然科学基金面上项目(编号:81470648)
更新日期/Last Update: 2018-10-30