[1]康红花,刘康成,韩云,等.蓝光对小鼠角膜上皮和角膜全层厚度的影响——基于光学相干断层扫描血管造影观察[J].眼科新进展,2018,38(6):506-509.[doi:10.13389/j.cnki.rao.2018.0118]
 KANG Hong-Hua,LIU Kang-Cheng,HAN Yun,et al.Effects of blue light on the thickness of corneal epithelium and full-thickness of the cornea in mice by optical coherence tomography angiography[J].Recent Advances in Ophthalmology,2018,38(6):506-509.[doi:10.13389/j.cnki.rao.2018.0118]
点击复制

蓝光对小鼠角膜上皮和角膜全层厚度的影响——基于光学相干断层扫描血管造影观察/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
38卷
期数:
2018年6期
页码:
506-509
栏目:
实验研究
出版日期:
2018-06-05

文章信息/Info

Title:
Effects of blue light on the thickness of corneal epithelium and full-thickness of the cornea in mice by optical coherence tomography angiography
作者:
康红花刘康成韩云马明洋叶蕾闵幼兰申眉袁晴朱佩文姜楠邵毅
330006 江西省南昌市,南昌大学第一附属医院眼科(康红花,刘康成,马明洋,叶蕾,闵幼兰,袁晴,朱佩文,邵毅);361102 福建省厦门市,厦门大学眼科研究所(韩云,申眉,姜楠)
Author(s):
KANG Hong-HuaLIU Kang-ChengHAN YunMA Ming-YangYE LeiMIN You-LanSHEN MeiYUAN QingZHU Pei-WenJIANG NanSHAO Yi
Ophthalmology,the First Affiliated Hospital of Nanchang University (KANG Hong-Hua,LIU Kang-Cheng,MA Ming-Yang,YE Lei,MIN You-Lan,YUAN Qing,ZHU Pei-Wen,SHAO Yi),Nanchang 330006,Jiangxi Province,China;the Eye Institute of Xiamen University(HAN Yun,SHEN Mei,JIANG Nan),Xiamen 361102,Fujian Province,China
关键词:
光学相干断层扫描血管造影技术蓝光角膜
Keywords:
optical coherence tomography angiography blue light cornea
分类号:
R770.43
DOI:
10.13389/j.cnki.rao.2018.0118
文献标志码:
A
摘要:
目的 应用光学相干断层扫描血管造影(optical coherence tomography angiography,OCTA)观察蓝光对小鼠角膜上皮和角膜全层厚度的影响。方法 选取40只小鼠随机分为实验组和对照组,每组各20只,其中实验组小鼠每天8~16 h于蓝光环境下饲养,而对照组小鼠于正常环境下饲养。分别于照射前及照射后1周、2周、1个月、2个月、3个月,利用OCTA分别测量实验组和对照组小鼠的角膜上皮和角膜全层厚度。结果 与蓝光照射前相比,实验组、对照组分别在照射后1周、2周、1个月,各区域角膜上皮厚度无明显改变,差异均无统计学意义(均为P>0.05)。与蓝光照射前相比,对照组在照射后2个月、3个月各区域角膜上皮厚度无明显改变,差异均无统计学意义(均为P>0.05)。与对照组相比,实验组角膜上皮中央、N5、I5、T5区域明显增厚,差异均有统计学意义(均为P<0.05);蓝光照射后3个月,与对照组相比,实验组小鼠角膜中央、内环及N6、T6区域角膜上皮厚度均明显增厚,差异均有统计学意义(均为P<0.05)。蓝光照射前,照射后1周、2周、1个月、2个月、3个月,实验组与对照组相比,各区域角膜全层厚度比较无明显改变,差异均无统计学意义(均为P>0.05)。两组角膜上皮厚度的极值,即最大值和最小值差值比较,差异有统计学意义(P<0.05),但两组角膜全层厚度最小值和最大值的差值比较无明显统计学意义(P>0.05)。结论 蓝光能引起小鼠角膜上皮厚度改变,且中央区域改变较为明显,但短期内角膜全层厚度无明显改变。
Abstract:
Objective To investigate the effects of blue light on the thickness of corneal epithelium and full-thickness of the cornea in mice by optical coherence tomography angiography(OCTA).Methods Totally 40 mice were collected and randomly divided into experimental group and control group,with 20 mice in each group,and the experimental mice were raised in the blue light environment from 8 to 16 hours per day,while the controls were reared in normal environment.Then the thickness of corneal epithelium and full-thickness of the cornea in both groups were measured by OCTA before irradiation and one week,two weeks,one month,two months and three months after irradiation,respectively.Results Compared with pre-irradiation,the thickness of corneal epithelium of all regions did not change significantly in both groups at 1 week,2 weeks,and 1 month after irradiation,and the differences were not statistically significant (all P>0.05).Compared with before irradiation,the corneal epithelium thickness of the control group at 2 months and 3 months after irradiation did not change significantly,and there was no significant difference (both P>0.05).Compared with the control group,the corneal epithelium at central,nasal 5 mm,inferior 5 mm,and temporal 5 mm regions in the experimental group were significantly thickened,and the differences were statistically significant (all P<0.05).Three months after irradiation,compared with the control group,the thickness of corneal epithelium in the central and inner regions of the cornea and nasal 6 mm and temporal 6 mm regions of the experimental group were significantly thickened,and the differences were statistically significant (all P<0.05).There was no significant change in the corneal full thickness between the experimental group and the control group before irradiation and 1 week,2 weeks,1 month,2 months,and 3 months after irradiation,and the differences were not statistically significant (all P>0.05).Furthermore,the difference in the extremum value of corneal epithelial thickness,namely the maximum and the minimum,was significantly different in both groups (P<0.05),but the difference in the extremum value of the full-thickness of the cornea was not significant in the two groups (P>0.05).Conclusion The blue light can change the thickness of corneal epithelium in mice,and the change of the central region is obvious,but the full-thickness of the cornea do not significantly change in a short term.

参考文献/References:

[1] LONG Q,CHEN D,CHU R.Illumination with monochromatic long-wave length light promotes myopic shift and ocular elongation in newborn pigmented guinea pigs[J].Cutan Ocul Toxicol,2009,28(4):176-180.
[2] YOUSSEF P N,SHEIBANI N,ALBERT D M.Retinal light toxicity[J].Eye(Lond),2011,25(1):1-14.
[3] MIWA Y,MURAKAMI T,SUZUMA K,UJI A,YOSHITAKE S,FUJIMOTO M,et al.Relationship between functional and structural changes in diabetic vessels in optical coherence tomography angiography[J].Sci Rep,2016,6:29064.
[4] ANG M,CAI Y,SHAHIPASAND S,SIM D A,KEANE P A,SNG C C,et al.En face optical coherence tomography angiography for corneal neovascularisation[J].Br J Ophthalmol,2016,100(5):616-621.
[5] ANG M,SIM D A,KEANE P A,SNG C C,EGAN C A,TUFAI A,et al.Optical coherence tomography angiography for anterior segment vasculature imaging[J].Ophthalmology,2015,122(9):1740-1747.
[6] SHAO Y,YU Y,LIU Q P,LI J M,DONG F,HUANG X,et al.Effects of Honghua preserved amniotic membrane on scar healing in experimental glaucoma surgery[J].Int J Ophthalmol,2014,7(2):226-231.
[7] SPAIDE R F,KLANCNIK J M Jr,COONEY M J.Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography[J].JAMA Ophthalmol,2015,133(1):66-73.
[8] VAN DE KRAATS J,VAN NORREN D.Optical density of the aging human ocular media in the visible and the UV[J].J Opt Soc Am A Opt Image Sci Vis,2007,24(7):1842-1857.
[9] GALLEGO P,MARTNEZ-GARCA C,PREZ-MERINO P,IBARES-FRAS L,MAYO-ISCAR A,MERAYO-L LOVES J.Scleral changes induced by atropine in chicks as an experimental model of myopia[J].Ophthal Physl Opt,2012,32(6):478-484.
[10] ORGANISCIAK D T,VAUGHAN D K.Retinal light damage:mechanisms and protection[J].Prog Retin Eye Res,2010,29(2):113-134.
[11] MARC R E,JONES B W,WATT C B,VAZQUEZ-CHONA F,VAUGHAN D K,ORGANISCIAK D T.Extreme retinal remodeling triggered by light damage:implications for age related macular degeneration[J].Mol Vis,2008,14(93-96):782-806.
[12] KERNT M,NEUBAUER A S,LIEGL R G,HIRNEISS C,ALGE C S,WOLF A,et al.Sorafenib prevents human retinal pigment epithelium cells from light-induced overexpression of VEGF,PDGF and PlGF[J].Br J Ophthalmol,2010,94(11):1533-1539.
[13] JIA Y,WEI E,WANG X,ZHANG X,MORRISON J C,PARIKH M,et al.Optical coherence tomography angiography of optic disc perfusion in glaucoma[J].Ophthalmology,2014,121(7):1322-1332.
[14] JIA Y,BAILEY S T,WILSON D J,TAN O,KLEIN M L,FLAXEL C J,et al.Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration[J].Ophthalmology,2014,121(7):1435-1444.
[15] CHA S H,LEE J S,OUM B S,KIM C D.Corneal epithelial cellular dysfunction from benzalkonium chloride (BAC) in vitro[J].Clin Exp Ophthalmol,2004,32(2):180-184.
[16] CHOY C K,BENZIE I F,CHO P.UV-mediated DNA strand breaks in corneal epithelial cells assessed using the comet assay procedure[J].Photochem Photobiol,2005,81(3):493-497.
[17] SLINEY D H.Risks of occupational exposure to optical radiation[J].Med Lav,2006,97(2):215-220.
[18] STAMATACOS C,HARRISON J L.The possible ocular hazards of LED dental illumination applications[J].J Mich Dent Assoc,2014,96(4):34-39.
[19] KHAN S,COLE N,HUME E B,GARTHWAITE L,CONIBEAR T C,MILES D H,et al.The role of CXC chemokine receptor 2 in Pseudomonas aeruginosa corneal infection[J].J Leukol Biol,2007,81(1):315-318.
[20] HALL L R,DIACONU E,PATEL R,PEARLMAN E.CXC chemokine receptor 2 but not C-C chemokine receptor 1 expression is essential for neutrophil recruitment to the cornea in helminth-mediated keratitis (river blindness)[J].J Immunol,2001,166(6):4035-4041.
[21] ZHANG Z,YANG W Z,ZHU Z Z,HU Q Q,CHEN Y F,HE H,et al.Therapeutic effects of topical doxycycline in a benzalkonium chloride-induced mouse dry eye model[J].Invest Ophthalmol Vis Sci,2014,55(5):2963-2974.
[22] MARNETT L J.Lipid peroxidation-DNA damage by malondialdehyde[J].Mutat Res,1999,424(1-2):83-95.
[23] DEDON P C,PLASTARAS J P,ROUZER C A,MARNETT L J.Indirect mutagenesis by oxidative DNA damage:Formation of the pyrimidopurinone adduct of deoxyguanosine by base propenal[J].Prol Natl Acad Sci USA,1998,95(19):11113-11116.
[24] NIWANO Y,KANNO T,IWASAWA A,AYAKI M,TSUBOTA K.Blue light injures corneal epithelial cells in the mitotic phase in vitro[J].Br J Ophthalmol,2014,98(7):990-992.
[25] LEE J B,KIM S H,LEE S C,KIM H G,AHN H G,LI Z,et al.Blue light-induced oxidative stress in human corneal epithelial cells:protective effects of ethanol extracts of various medicinal plant mixtures[J].Invest Ophthalmol Vis Sci,2014,55(7):4119-4127.

相似文献/References:

[1]徐志刚,符俊达,吕淑慧,等.不同光量子数蓝光长时间间断照射对豚鼠屈光发育及视网膜损伤作用[J].眼科新进展,2016,36(1):015.[doi:10.13389/j.cnki.rao.2016.0005]
 XU Zhi-Gang,FU Jun-Da,LV Shu-Hui,et al.Effects of different quantum number of blue light irradiation on refractive development and retinal damage in guinea pigs[J].Recent Advances in Ophthalmology,2016,36(6):015.[doi:10.13389/j.cnki.rao.2016.0005]
[2]闵幼兰,袁晴,马明洋,等.苯扎溴铵和西酞普兰对小鼠角膜上皮和角膜全层厚度的影响[J].眼科新进展,2018,38(2):101.[doi:10.13389/j.cnki.rao.2018.0022]
 MIN You-Lan,YUAN Qing,MA Ming-Yang,et al.Effects of benzalkonium bromide and citalopram on the thickness of corneal epithelium and full-thickness of the cornea in mice[J].Recent Advances in Ophthalmology,2018,38(6):101.[doi:10.13389/j.cnki.rao.2018.0022]
[3]王雨薇,仇纯婷,张旭.户外蓝光抑制近视相关机制的研究进展[J].眼科新进展,2018,38(10):905.[doi:10.13389/j.cnki.rao.2018.0214]
 WANG Yu-Wei,QIU Chun-Ting,ZHANG Xu.Potential mechanisms of blue light outdoors against myopia[J].Recent Advances in Ophthalmology,2018,38(6):905.[doi:10.13389/j.cnki.rao.2018.0214]
[4]范晶,丁芝祥.光环境与近视发病机制研究进展[J].眼科新进展,2022,42(8):639.[doi:10.13389/j.cnki.rao.2022.0131]
 FAN Jing,DING Zhixiang.Advances in the correlation between light environment and myopia[J].Recent Advances in Ophthalmology,2022,42(6):639.[doi:10.13389/j.cnki.rao.2022.0131]
[5]张楚,陈倩雯,周文杰,等.miR-22-3p对蓝光暴露下大鼠视网膜神经节细胞的保护作用及其机制[J].眼科新进展,2022,42(10):780.[doi:10.13389/j.cnki.rao.2022.0160]
 ZHANG Chu,CHEN Qianwen,ZHOU Wenjie,et al.Protective effect and mechanism of miR-22-3p on rat retinal ganglion cells exposed to blue light[J].Recent Advances in Ophthalmology,2022,42(6):780.[doi:10.13389/j.cnki.rao.2022.0160]
[6]王宵,栾长霖,孙一帆,等.蓝光对豚鼠屈光系统发育的影响[J].眼科新进展,2024,44(1):018.[doi:10.13389/j.cnki.rao.2024.0003]
 WANG Xiao,LUAN Changlin,SUN Yifan,et al.Effects of blue light on the development of the dioptric system in guinea pigs[J].Recent Advances in Ophthalmology,2024,44(6):018.[doi:10.13389/j.cnki.rao.2024.0003]

备注/Memo

备注/Memo:
国家自然科学基金资助(编号:81660158、81160118、81460092、81400372);江西省远航工程(编号:2014022);江西省自然科学基金重大项目(编号:2016ACB21017);江西省青年科学基金(编号:20151BAB215016);江西省科技支撑计划项目(编号:20151BBG70223);江西省卫计委科技计划面上项目(编号:20155204、20175116)
更新日期/Last Update: 2018-07-10