[1]范晶,丁芝祥.光环境与近视发病机制研究进展[J].眼科新进展,2022,42(8):639-643.[doi:10.13389/j.cnki.rao.2022.0131]
 FAN Jing,DING Zhixiang.Advances in the correlation between light environment and myopia[J].Recent Advances in Ophthalmology,2022,42(8):639-643.[doi:10.13389/j.cnki.rao.2022.0131]
点击复制

光环境与近视发病机制研究进展/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
42卷
期数:
2022年8期
页码:
639-643
栏目:
文献综述
出版日期:
2022-08-06

文章信息/Info

Title:
Advances in the correlation between light environment and myopia
作者:
范晶丁芝祥
541000 广西壮族自治区桂林市,桂林医学院(范晶);541001 广西壮族自治区桂林市,桂林医学院附属医院眼科(丁芝祥)
Author(s):
FAN Jing1DING Zhixiang2
1.Guilin Medical University,Guilin 541000,Guangxi Zhuang Autonomous Region,China
2.Department of Ophthalmology,the Affiliated Hospital of Guilin Medical University,Guilin 541001,Guangxi Zhuang Autonomous Region,China
关键词:
近视光环境多巴胺紫光蓝光
Keywords:
myopia light environment dopamine violet light blue light
分类号:
R778.1
DOI:
10.13389/j.cnki.rao.2022.0131
文献标志码:
A
摘要:
在许多国家,近视的发生率都呈上升趋势。人类流行病学和动物模型研究表明,暴露于高强度或户外照明可以降低近视的严重程度,但目前还未完全明确光与视觉信号相互作用对近视的影响及机制。本文就光环境与近视发病机制和临床干预的潜在靶点进行综述,以期为近视的预防提供理论基础和进行一定的临床探索。
Abstract:
In many countries, the incidence of myopia is on the rise, causing heavy economic burdens and obstacles to public health and social development. Human epidemiology and animal model research have confirmed that exposure to high-intensity or outdoor lighting can reduce the severity of myopia. However, the effect of interaction between light and visual signals on myopia has not been clear. This review summarizes the pathogenesis of myopia related to the light environment and clinically-intervened potential targets, to provide a theoretical basis for the prevention of myopia and clinical explorations.

参考文献/References:

[1] HOLDEN B A,FRICKE T R,WILSON D A,JONG M,NAIDOO K S,SANKARIDURG P,et al.Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J].Ophthalmology,2016,123(5):1036-1042.
[2] FLITCROFT D I,HE M,JONAS J B,JONG M,NAIDOO K,OHNO-MATSUI K,et al.IMI-defining and classifying myopia:a proposed set of standards for clinical and epidemiologic studies[J].Invest Ophthalmol Vis Sci,2019,60(3):M20-M30.
[3] WU P C,CHEN C T,LIN K K,SUN C C,KUO C N,HUANG H M,et al.Myopia prevention and outdoor light intensity in a school-based cluster randomized trial[J].Ophthalmology,2018,125(8):1239-1250.
[4] SAW S M,ZHANG M Z,HONG R Z,FU Z F,PANG M H,TAN D T.Near-work activity,night-lights,and myopia in the Singapore-China study[J].Arch Ophthalmol,2002,120(5):620-627.
[5] MORGAN I G,FRENCH A N,ASHBY R S,GUO X,DING X,HE M,et al.The epidemics of myopia:aetiology and prevention[J].Prog Retin Eye Res,2018,62:134-149.
[6] MORGAN I G,ASHBY R S.Bright light blocks the development of form deprivation myopia in mice,acting on d1 dopamine receptors[J].Invest Ophthalmol Vis Sci,2017,58(4):2317.
[7] TORII H,KURIHARA T,SEKO Y,NEGISHI K,OHNUMA K,INABA T,et al.Violet light exposure can be a preventive strategy against myopia progression[J].EBioMedicine,2017,15:210-219.
[8] BOLLMANN J H.The zebrafish visual system:from circuits to behavior[J].Annu Rev Vis Sci,2019,5:269-293.
[9] STONE R A,LIN T,LATIES A M,IUVONE P M.Retinal dopamine and form-deprivation myopia[J].Proc Natl Acad Sci U S A,1989,86(2):704-706.
[10] CHEN S,ZHI Z,RUAN Q,LIU Q,LI F,WAN F,et al.Bright light suppresses form-deprivation myopia development with activation of dopamine d1 receptor signaling in the ON pathway in retina[J].Invest Ophthalmol Vis Sci,2017,58(4):2306-2316.
[11] CHAKRABORTY R,OSTRIN L A,NICKLA D L,IUVONE P M,PARDUE M T,STONE R A.Circadian rhythms,refractive development,and myopia[J].Ophthalmic Physiol Opt,2018,38(3):217-245.
[12] LIU H,SCHAEFFEL F,TRIER K,FELDKAEMPER M.Effects of 7-methylxanthine on deprivation myopia and retinal dopamine release in chickens[J].Ophthalmic Res,2020,63(3):347-357.
[13] STONE R A,PARDUE M T,IUVONE P M,KHURANA T S.Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms[J].Exp Eye Res,2013,114:35-47.
[14] ZHANG J,DENG G.Protective effects of increased outdoor time against myopia:a review[J].J Int Med Res,2020,48(3):300060519893866.
[15] KE Y,LI W,TAN Z,YANG Z.Induction of dopamine D1 and D5 receptors in R28 cells by light exposures[J].Biochem Biophys Res Commun,2017,486(3):686-692.
[16] HE M,XIANG F,ZENG Y,MAI J,CHEN Q,ZHANG J,et al.Effect of time spent outdoors at school on the development of myopia among children in China:a randomized clinical trial[J].JAMA,2015,314(11):1142-1148.
[17] ZADNIK K,MUTTI D O.Outdoor activity protects against childhood myopia-let the sun shine in[J].JAMA Pediatr,2019,173(5):415-416.
[18] SHERWIN J C,REACHER M H,KEOGH R H,KHAWAJA A P,MACKEY D A,FOSTER P J.The association between time spent outdoors and myopia in children and adolescents:a systematic review and meta-analysis[J].Ophthalmology,2012,119(10):2141-2151.
[19] LINGHAM G,MACKEY D A,LUCAS R,YAZAR S.How does spending time outdoors protect against myopia?A review[J].Br J Ophthalmol,2020,104(5):593-599.
[20] WEISS R S,PARK S.Recent updates on myopia control:preventing progression 1 diopter at a time[J].Curr Opin Ophthalmol,2019,30(4):215-219.
[21] 李静一,刘群,李长安,黄海虹,戴旭.户外活动和0.1 g·L-1阿托品对学龄期儿童控制近视发展的疗效对比[J].眼科新进展,2019,39(2):158-161.
LI J Y,LIU Q,LI C A,HUANG H H,DAI X.Comparison of outdoor activities and 0.1 g·L-1 atropine in preventing myopia progression in children[J].Rec Adc Ophthalmol,2019,39(2):158-161.
[22] DHARANI R,LEE C F,THENG Z X,DRURY V B,NGO C,SANDAR M,et al.Comparison of measurements of time outdoors and light levels as risk factors for myopia in young Singapore children[J].Eye (Lond),2012,26(7):911-918.
[23] NORTON T T,SIEGWART J T Jr.Light levels,refractive development,and myopia--a speculative review[J].Exp Eye Res,2013,114:48-57.
[24] ASHBY R.Animal studies and the mechanism of myopia-protection by light?[J].Optom Vis Sci,2016,93(9):1052-1054.
[25] IUVONE P M,GALLI C L,GARRISON-GUND C K,NEFF N H.Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons[J].Science,1978,202(4370):901-902.
[26] PREZ-FERNNDEZ V,MILOSAVLJEVIC N,ALLEN A E,VESSEY K A,JOBLING A I,FLETCHER E L,et al.Rod photoreceptor activation alone defines the release of dopamine in the retina[J].Curr Biol,2019,29(5):763-774.
[27] LANDIS E G,PARK H N,CHRENEK M,HE L,SIDHU C,CHAKRABORTY R,et al.Ambient light regulates retinal dopamine signaling and myopia susceptibility[J].Invest Ophthalmol Vis Sci,2021,62(1):28.
[28] LANDIS E G,YANG V,BROWN D M,PARDUE M T,READ S A.Dim light exposure and myopia in children[J].Invest Ophthalmol Vis Sci,2018,59(12):4804-4811.
[29] REN X,ZHANG Q,YANG J,ZHANG X,ZHANG X,ZHANG Y,et al.Dopamine imaging in living cells and retina by surface-enhanced raman scattering based on functionalized gold nanoparticles[J].Analyt Chemis,2021,93(31):10841-10849.
[30] NICKLA D L,SARFARE S,MCGEEHAN B,WEI W,ELIN-CALCADOR J,HE L,et al.Visual conditions affecting eye growth alter diurnal levels of vitreous DOPAC[J].Exp Eye Res,2020,200:108226.
[31] LANCA C,TEO A,VIVAGANDAN A,HTOON H M,NAJJAR R P,SPIEGEL D P,et al.The effects of different outdoor environments,sunglasses and hats on light levels:implications for myopia prevention[J].Transl Vis Sci Technol,2019,8(4):7.
[32] YANG X,YANG Y,WANG Y,WEI Q,DING H,ZHONG X.Protective effects of sunlight exposure against PRK-induced myopia in infant rhesus monkeys[J].Ophthalmic Physiol Opt,2021,41(4):911-921.
[33] READ S A,COLLINS M J,VINCENT S J.Light exposure and eye growth in childhood[J].Invest Ophthalmol Vis Sci,2015,56(11):6779-6787.
[34] RUCKER F.Monochromatic and white light and the regulation of eye growth[J].Exp Eye Res,2019,184:172-182.
[35] LANDIS E G,CHRENEK M A,CHAKRABORTY R,STRICKLAND R,BERGEN M,YANG V,et al.Increased endogenous dopamine prevents myopia in mice[J].Exp Eye Res,2020,193:107956.
[36] FLITCROFT D I,HARB E N,WILDSOET C F.The spatial frequency content of urban and indoor environments as a potential risk factor for myopia development[J].Invest Ophthalmol Vis Sci,2020,61(11):42.
[37] PONS C,MAZADE R,JIN J,DUL M W,ZAIDI Q,ALONSO J M.Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision[J].J Vis,2017,17(14):5.
[38] STRICKLAND R,LANDIS E G,PARDUE M T.Short-wavelength (violet) light protects mice from myopia through cone signaling[J].Invest Ophthalmol Vis Sci,2020,61(2):13.
[39] ALVAREZ-PEREGRINA C,SNCHEZ-TENA M,MARTINEZ-PEREZ C,VILLA-COLLAR C.The relationship between screen and outdoor time with rates of myopia in spanish children[J].Front Public Health,2020,8:560378.
[40] YAFFE D,FORREST L R,SCHULDINER S.The ins and outs of vesicular monoamine transporters[J].J Gen Physiol,2018,150(5):671-682.
[41] TIKIDJI-HAMBURYAN A,REINHARD K,STORCHI R,DIETTER J,SEITTER H,DAVIS K E,et al.Rods progressively escape saturation to drive visual responses in daylight conditions[J].Nat Commun,2017,8(1):1813.
[42] KRUTMANN J,BHAR-COHEN F,BAILLET G,DE AYGUAVIVES T,ORTEGA GARCIA P,PEA-GARCA P,et al.Towards standardization of UV eye protection:what can be learned from photodermatology?[J].Photodermatol Photoimmunol Photomed,2014,30(2-3):128-136.
[43] HECHT S,MINTZ E U.The visibility of single lines at various illuminations and the retinal basis of visual resolution[J].J Gen Physiol,1939,22(5):593-612.
[44] SCHAEFFEL F,SMITH E L 3rd.Inhibiting myopia by (nearly) invisible light?[J].EBioMedicine,2017,16:27-28.
[45] OFUJI Y,TORII H,YOTSUKURA E,MORI K,KURIHARA T,NEGISHI K,et al.Axial length shortening in a myopic child with anisometropic amblyopia after wearing violet light-transmitting eyeglasses for 2 years[J].Am J Ophthalmol Case Rep,2020,20:101002.
[46] TORII H,OHNUMA K,KURIHARA T,TSUBOTA K,NEGISHI K.Violet light transmission is related to myopia progression in adult high myopia[J].Sci Rep,2017,7(1):14523.
[47] WANG M,SCHAEFFEL F,JIANG B,FELDKAEMPER M.Effects of light of different spectral composition on refractive development and retinal dopamine in chicks[J].Invest Ophthalmol Vis Sci,2018,59(11):4413-4424.
[48] 王雨薇,仇纯婷,张旭.户外蓝光抑制近视相关机制的研究进展[J].眼科新进展,2018,38(10):905-908.
WANG Y W,QIU C T,ZHANG X.Potential mechanisms of blue light outdoors against myopia[J].Rec Adv Ophthalmol,2018,38(10):905-908.
[49] JOHNSON E N,WESTBROOK T,SHAYESTEH R,CHEN E L,SCHUMACHER J W,FITZPATRICK D,et al.Distribution and diversity of intrinsically photosensitive retinal ganglion cells in tree shrew[J].J Comp Neurol,2019,527(1):328-344.
[50] GAWNE T J,SIEGWART J T Jr,WARD A H,NORTON T T.The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews[J].Exp Eye Res,2017,155:75-84.
[51] GAWNE T J,WARD A H,NORTON T T.Juvenile tree shrews do not maintain emmetropia in narrow-band blue light[J].Optom Vis Sci,2018,95(10):911-920.
[52] YOON H,TAYLOR C P,RUCKER F.Spectral composition of artificial illuminants and their effect on eye growth in chicks[J].Exp Eye Res,2021,207:108602.
[53] RUCKER F,BRITTON S,SPATCHER M,HANOWSKY S.Blue light protects against temporal frequency sensitive refractive changes[J].Invest Ophthalmol Vis Sci,2015,56(10):6121-6131.
[54] ZHAO H L,JIANG J,YU J,XU H M.Role of short-wavelength filtering lenses in delaying myopia progression and amelioration of asthenopia in juveniles[J].Int J Ophthalmol,2017,10(8):1261-1267.
[55] WATTS N S,TAYLOR C,RUCKER F J.Temporal color contrast guides emmetropization in chick[J].Exp Eye Res,2021,202:108331.
[56] HUNG L F,ARUMUGAM B,SHE Z,OSTRIN L,SMITH E L 3rd.Narrow-band,long-wave length lighting promotes hyperopia and retards vision-induced myopia in infant rhesus monkeys[J].Exp Eye Res,,2018,176:147-160.
[57] SMITH E L 3rd,HUNG L F,ARUMUGAM B,HOLDEN B A,NEITZ M,NEITZ J.Effects of long-wave length lighting on refractive development in infant rhesus monkeys[J].Invest Ophthalmol Vis Sci,2015,56(11):6490-6500.
[58] GAWNE T J,WARD A H,NORTON T T.Long-wavelength (red) light produces hyperopia in juvenile and adolescent tree shrews[J].Vis Res,2017,140:55-65.
[59] SEIDEMANN A,SCHAEFFEL F.Effects of longitudinal chromatic aberration on accommodation and emmetropization[J].Vis Res,2002,42(21):2409-2417.

相似文献/References:

[1]计垣.近视的分子遗传学研究进展[J].眼科新进展,2012,32(6):000.
[2]张卫霞 曾照年 唐秀侠 孙宏霞 李洪润.Zywave波前像差仪在近视屈光不正测量中的应用[J].眼科新进展,2012,32(7):000.
[3]闵红波 刘小红 花雷 韩文龙 储明慧 邵娟英.近视对OCT测量视网膜神经纤维层厚度的影响[J].眼科新进展,2012,32(12):000.
[4]刘太祥 李海祥 石容 王铮.ORK程序中两种切削模式治疗近视术后角膜像差变化及对视觉功能的影响[J].眼科新进展,2013,33(1):000.
[5]陈月芹 黄振平 薛春燕 葛轶睿.有晶状体眼虹膜固定型人工晶状体植入术后房角宽度的改变[J].眼科新进展,2013,33(6):000.
[6]王凌飞 杨瑞波 赵少贞.CACHET有晶状体眼人工晶状体植入术后视觉质量的临床评价[J].眼科新进展,2013,33(6):000.
[7]胡裕坤 李文静 高晓唯 董晶 郭云林.飞秒激光微小切口角膜基质透镜切除术治疗近视对角膜波前像差的影响[J].眼科新进展,2013,33(7):000.
[8]许瑶 曾骏文.近视眼药物治疗研究进展[J].眼科新进展,2013,33(7):000.
[9]汤勇 刘才远.LASIK、Epi-LASIK、SBK、Fem-LASIK及SMILE术中角膜切削误差的对比研究[J].眼科新进展,2013,33(9):000.
[10]吴玉伟 李筱荣 张琰 赵雅丽 王晓燕.无酒精LASEK治疗近视和近视散光的临床疗效[J].眼科新进展,2013,33(9):000.

备注/Memo

备注/Memo:
国家自然科学基金项目(编号:82160197);广西自然科学基金项目(编号:2015GXNSFAA139179);广西医疗卫生适宜技术研究与开发项目(编号:S201407-08)
更新日期/Last Update: 2022-08-05