[1]王宵,栾长霖,孙一帆,等.蓝光对豚鼠屈光系统发育的影响[J].眼科新进展,2024,44(1):018-23.[doi:10.13389/j.cnki.rao.2024.0003]
 WANG Xiao,LUAN Changlin,SUN Yifan,et al.Effects of blue light on the development of the dioptric system in guinea pigs[J].Recent Advances in Ophthalmology,2024,44(1):018-23.[doi:10.13389/j.cnki.rao.2024.0003]
点击复制

蓝光对豚鼠屈光系统发育的影响/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
44卷
期数:
2024年1期
页码:
018-23
栏目:
实验研究
出版日期:
2024-01-05

文章信息/Info

Title:
Effects of blue light on the development of the dioptric system in guinea pigs
作者:
王宵栾长霖孙一帆杨诗巧王凯磊郝瑞张伟
300020 天津市,天津市眼科医院,天津医科大学眼科临床学院(王宵,栾长霖,孙一帆,杨诗巧,王凯磊,郝瑞,张伟); 300020 天津市,南开大学附属眼科医院(郝瑞,张伟)
Author(s):
WANG Xiao1 LUAN Changlin1 SUN Yifan1YANG Shiqiao1 WANG Kailei1 HAO Rui12 ZHANG Wei12
1.Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University,Tianjin 300020,China 2.Nankai University Affiliated Eye Hospital,Tianjin 300020,China
关键词:
近视蓝光屈光发育豚鼠
Keywords:
myopia blue light dioptric development guinea pigs
分类号:
R778
DOI:
10.13389/j.cnki.rao.2024.0003
文献标志码:
A
摘要:
目的 研究蓝光对镜片诱导近视(LIM)豚鼠的眼屈光发育的影响。方法 将3周龄的三色豚鼠随机分为3组:对照组、白光LIM组、蓝光LIM组(420 nm LED灯,照度700 lx),后两组豚鼠右眼配戴-10.00 D镜片诱导近视。所有豚鼠均处于12 h光照/12 h黑暗周期。在干预前及干预后2周、4周测量所有豚鼠屈光度、眼轴长度、视网膜厚度、脉络膜厚度,干预4周时对豚鼠行角膜荧光染色以及视网膜HE染色。结果 与对照组相比,在干预前至干预2周时(0-2周变化量),白光LIM组豚鼠向近视漂移(-2.22±1.28)D,眼轴延长(0.40±0.05)mm,视网膜厚度和脉络膜厚度变薄,分别变化(-7.42±7.04) μm和(-6.29±4.66) μm;与白光LIM组相比,蓝光LIM组豚鼠向远视漂移(0.48±1.16)D,眼轴长度延长(0.20±0.10)mm(均为P<0.05),视网膜增厚(1.36±7.46) μm,脉络膜增厚(8.05±8.08) μm(均为P<0.05)。在干预2周至干预4周时(2-4周变化量),与对照组相比,白光LIM组和蓝光LIM组豚鼠屈光度均向近视发展,分别变化(-4.64±0.50)D和(-2.11±2.02)D(均为P<0.05),白光LIM组豚鼠的眼轴长度延长,视网膜和脉络膜厚度仍变薄,分别变化(0.44±0.06) mm、(-7.35±5.87) μm、(-4.84±2.61)μm;但此时蓝光LIM组豚鼠的脉络膜厚度停止增加并变薄,并且视网膜厚度减少,分别变化(-0.33±5.95)μm、(-4.78±4.96) μm。角膜荧光染色和视网膜HE染色结果表明,长时间蓝光照射可导致角膜和视网膜细胞的损伤。结论 蓝光可能通过脉络膜相关机制影响近视的发展,但其抑制效果并不与时间呈单纯的正相关,长期的蓝光照射会损伤角膜和视网膜,从而降低抑制效果。
Abstract:
Objective To investigate the effect of blue light on the dioptric development of the eyes of lens-induced myopia (LIM) guinea pigs. Methods Three-week-old trichromatic guinea pigs were randomly divided into three groups: control group, white light LIM (WL) group, and blue light LIM (BL) group (420 nm LED light, with an illuminance of 700 lx); guinea pigs in the latter two groups wore -10.00 D lenses in their right eyes to induce myopia. All guinea pigs underwent a 12 h light/12 h dark treatment cycle. Before and 2, 4 weeks after the intervention, the diopter, axial length, retinal thickness and choroidal thickness were measured in all groups. After 4 weeks of intervention, the corneal fluorescent staining and retinal Hematoxylin and Eosin (HE) staining were conducted.Results Compared with the control group, from week 0 to week 2 of the intervention (changes in weeks 0-2), the eyes in the WL group drifted (-2.22±1.28) D towards myopia, the axial length lengthened by (0.40±0.05) mm, and the retinal and choroidal thicknesses reduced by (-7.42±7.04) μm and (-6.29±4.66) μm, respectively; compared with the WL group, in the BL group, the eyes drifted toward hyperopia by (0.48±1.16) D, the axial length increased by (0.20±0.10) mm, and retinal and choroidal thicknesses increased by (1.36±7.46) μm and (8.05±8.08) μm, respectively (all P<0.05). From week 2 to week 4 (changes in weeks 2-4), compared with the control group, the diopter in the WL and BL groups progressed towards myopia, with changes of (-4.64±0.50) D and (-2.11±2.02) D, respectively (both P<0.05); the axial length lengthened, and retinal and choroidal thicknesses reduced in the WL group, with changes of (0.44±0.06) mm, (-7.35±5.87) μm and (-4.84±2.61) μm, while the choroidal thickness and the retinal thickness decreased in the BL group, with changes of (-0.33±5.95) μm and (-4.78±4.96) μm, respectively. Observations of corneal fluorescence staining and retinal HE staining indicated that prolonged blue light exposure could lead to damage to corneal and retinal cells.Conclusion Blue light may influence the development of myopia through choroid-related mechanisms, but its inhibitory effect is not positively correlated with time. Prolonged exposure to blue light can damage the cornea and retina, thereby reducing the inhibitory effect.

参考文献/References:

[1] BAIRD P N,SAW S M,LANCA C,GUGGENHEIM J A,SMITH III E L,ZHOU X,et al.Myopia[J].Nat Rev Dis Primers,2020,6(1):99.
[2] SAW S M,GAZZARD G,SHIH-YEN E C,CHUA W H.Myopia and associated pathological complications[J].Ophthalmic Physiol Opt,2005,25(5):381-391.
[3] OHNO-MATSUI K,WU P C,YAMASHIRO K,VUTIPONGSATORN K,FANG Y,CHEUNG C M G,et al.IMI pathologic myopia[J].Invest Ophthalmol Vis Sci,2021,62(5):5.
[4] XIONG S,SANKARIDURG P,NADUVILATH T,ZANG J,ZOU H,ZHU J,et al.Time spent in outdoor activities in relation to myopia prevention and control:a meta-analysis and systematic review[J].Acta Ophthalmol,2017,95(6):551-566.
[5] GALVIS V,TELLO A,PARRA M M.Light levels and the deve-lopment of deprivation myopia[J].Invest Ophthalmol Vis Sci,2016,57(3):824.
[6] THORNE H C,JONES K H,PETERS S P,ARCHER S N,DIJK D J.Daily and seasonal variation in the spectral composition of light exposure in humans[J].Chronobiol Int,2009,26(5):854-866.
[7] MAREK V,MLIK-PARSADANIANTZ S,VILLETTE T,MONTOYA F,BAUDOUIN C,BRIGNOLE-BAUDOUIN F,et al.Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions[J].Free Radic Biol Med,2018,126:27-40.
[8] JNAWALI A,BEACH K M,OSTRIN L A.In vivo imaging of the retina,choroid,and optic nerve head in guinea pigs[J].Curr Eye Res,2018,43(8):1006-1018.
[9] LIU S,YE S,XI W,ZHANG X.Electronic devices and myopic refraction among children aged 6-14 years in urban areas of Tianjin,China[J].Ophthalmic Physiol Opt,2019,39(4):282-293.
[10] ROZEMA J,DANKERT S,IRIBARREN R.Emmetropization and nonmyopic eye growth[J].Surv Ophthalmol,2023,68(4):759-783.
[11] JIANG L,SCHAEFFEL F,ZHOU X,ZHANG S,JIN X,PAN M,et al.Spontaneous axial myopia and emmetropization in a strain of wild-type guinea pig (Cavia porcellus)[J].Invest Ophthalmol Vis Sci,2009,50(3):1013-1019.
[12] JIANG L,LIU X,ZHOU L,BUSOY J M F,KHINE M T,DAN Y S,et al.Choroidal thickness in early postnatal guinea pigs predicts subsequent naturally occurring and form-deprivation myopia[J].Invest Ophthalmol Vis Sci,2022,63(11):10.
[13] ZHANG S,ZHANG G,ZHOU X,XU R,WANG S,GUAN Z,et al.Changes in choroidal thickness and choroidal blood perfusion in guinea pig myopia[J].Invest Ophthalmol Vis Sci,2019,60(8):3074-3083.
[14] KHANAL S,NORTON T T,GAWNE T J.Limited bandwidth short-wavelength light produces slowly-developing myopia in tree shrews similar to human juvenile-onset myopia[J].Vision Res,2023,204:108161.
[15] YU M,LIU W,WANG B,DAI J.Short wavelength (blue) light is protective for lens-induced myopia in guinea pigs potentially through a retinoic acid-related mechanism[J].Invest Ophthalmol Vis Sci,2021,62(1):21.
[16] JU Y,TANG Z,DAI X,GAO H,ZHANG J,LIU Y,et al.Protection against light-induced retinal degeneration via dual anti-inflammatory and anti-angiogenic functions of thrombospondin-1[J].Br J Pharmacol,2022,179(9):1938-1961.
[17] WANG L,YU X,ZHANG D,WEN Y,ZHANG L,XIA Y,et al.Long-term blue light exposure impairs mitochondrial dynamics in the retina in light-induced retinal degeneration in vivo and in vitro[J].J Photochem Photobiol B,2023,240:112654.
[18] GARCA-AYUSO D,GALINDO-ROMERO C,DI PIERDOMENICO J,VIDAL-SANZ M,AGUDO-BARRIUSO M,VILLEGAS PREZ M P.Light-induced retinal degeneration causes a transient downregulation of melanopsin in the rat retina[J].Exp Eye Res,2017,161:10-16.
[19] WANG X,SONG Z,LI H,LIU K,SUN Y,LIU X,et al.Short-wavelength blue light contributes to the pyroptosis of human lens epithelial cells (hLECs)[J].Exp Eye Res,2021,212:108786.
[20] LI Y,JIN R,LI L,CHOI J S,KIM J,YOON H J,et al.Blue light induces impaired autophagy through nucleotide-binding oligomerization domain 2 activation on the mouse ocular surface[J].Int J Mol Sci,2021,22(4):2015.
[21] THAKUR S,DHAKAL R,VERKICHARLA P K.Short-term exposure to blue light shows an inhibitory effect on axial elongation in human eyes independent of defocus[J].Invest Ophthalmol Vis Sci,2021,62(15):22.
[22] WANG M,SCHAEFFEL F,JIANG B,FELDKAEMPER M.Effects of light of different spectral composition on refractive development and retinal dopamine in chicks[J].Invest Ophthalmol Vis Sci,2018,59(11):4413-4424.
[23] CHAKRABORTY R,LANDIS E G,MAZADE R,YANG V,STRICKLAND R,HATTAR S,et al.Melanopsin modulates refractive development and myopia[J].Exp Eye Res,2022,214:108866.
[24] DE MORAES L H O,MANCINI M W,ALMEIDA-LOPES L,RODRIGUES G J.Violet LED induces vasodilation in rat aortic rings by soluble guanylate cyclase-dependent mechanism and increases SOD activity[J].Lasers Med Sci,2022,37(1):537-544.

相似文献/References:

[1]计垣.近视的分子遗传学研究进展[J].眼科新进展,2012,32(6):000.
[2]张卫霞 曾照年 唐秀侠 孙宏霞 李洪润.Zywave波前像差仪在近视屈光不正测量中的应用[J].眼科新进展,2012,32(7):000.
[3]闵红波 刘小红 花雷 韩文龙 储明慧 邵娟英.近视对OCT测量视网膜神经纤维层厚度的影响[J].眼科新进展,2012,32(12):000.
[4]刘太祥 李海祥 石容 王铮.ORK程序中两种切削模式治疗近视术后角膜像差变化及对视觉功能的影响[J].眼科新进展,2013,33(1):000.
[5]陈月芹 黄振平 薛春燕 葛轶睿.有晶状体眼虹膜固定型人工晶状体植入术后房角宽度的改变[J].眼科新进展,2013,33(6):000.
[6]王凌飞 杨瑞波 赵少贞.CACHET有晶状体眼人工晶状体植入术后视觉质量的临床评价[J].眼科新进展,2013,33(6):000.
[7]胡裕坤 李文静 高晓唯 董晶 郭云林.飞秒激光微小切口角膜基质透镜切除术治疗近视对角膜波前像差的影响[J].眼科新进展,2013,33(7):000.
[8]许瑶 曾骏文.近视眼药物治疗研究进展[J].眼科新进展,2013,33(7):000.
[9]汤勇 刘才远.LASIK、Epi-LASIK、SBK、Fem-LASIK及SMILE术中角膜切削误差的对比研究[J].眼科新进展,2013,33(9):000.
[10]吴玉伟 李筱荣 张琰 赵雅丽 王晓燕.无酒精LASEK治疗近视和近视散光的临床疗效[J].眼科新进展,2013,33(9):000.
[11]王雨薇,仇纯婷,张旭.户外蓝光抑制近视相关机制的研究进展[J].眼科新进展,2018,38(10):905.[doi:10.13389/j.cnki.rao.2018.0214]
 WANG Yu-Wei,QIU Chun-Ting,ZHANG Xu.Potential mechanisms of blue light outdoors against myopia[J].Recent Advances in Ophthalmology,2018,38(1):905.[doi:10.13389/j.cnki.rao.2018.0214]
[12]范晶,丁芝祥.光环境与近视发病机制研究进展[J].眼科新进展,2022,42(8):639.[doi:10.13389/j.cnki.rao.2022.0131]
 FAN Jing,DING Zhixiang.Advances in the correlation between light environment and myopia[J].Recent Advances in Ophthalmology,2022,42(1):639.[doi:10.13389/j.cnki.rao.2022.0131]

备注/Memo

备注/Memo:
国家自然科学基金项目(编号:81800861);天津市眼科医院科技基金青年培育项目(编号:YKPY2201);南开大学眼科学研究院开放基金定向支持项目(编号:NKYKD2022202);天津市卫生健康行业高层次人才计划(青年医学新锐)(编号:TJSQNYXXR-D2-137)
更新日期/Last Update: 2024-01-05