[1]赵秋语,陈黎,胡敏.树鼩形觉剥夺性弱视模型的视网膜形态变化[J].眼科新进展,2023,43(7):520-525.[doi:10.13389/j.cnki.rao.2023.0105]
 ZHAO Qiuyu,CHEN Li,HU Min.Retinal morphological changes in tree shrew model with form deprivation amblyopia[J].Recent Advances in Ophthalmology,2023,43(7):520-525.[doi:10.13389/j.cnki.rao.2023.0105]
点击复制

树鼩形觉剥夺性弱视模型的视网膜形态变化/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
43卷
期数:
2023年7期
页码:
520-525
栏目:
实验研究
出版日期:
2023-07-05

文章信息/Info

Title:
Retinal morphological changes in tree shrew model with form deprivation amblyopia
作者:
赵秋语陈黎胡敏
650504 云南省昆明市,云南大学(赵秋语);650021 云南省昆明市,云南大学附属医院儿童眼科(陈黎,胡敏)
Author(s):
ZHAO Qiuyu1CHEN Li2HU Min2
1.Yunnan University,Kunming 650504,Yunnan Province,China
2.Department of Pediatric Ophthalmology,Affiliated Hospital of Yunnan University,Kunming 650021,Yunnan Province,China
关键词:
树鼩形觉剥夺性弱视组织学
Keywords:
tree shrew form deprivation amblyopia histology
分类号:
R777.44
DOI:
10.13389/j.cnki.rao.2023.0105
文献标志码:
A
摘要:
目的 建立形觉剥夺性树鼩弱视模型,从形态学方面观察弱视形成及恢复过程中视网膜的变化,为进一步探究弱视形成及恢复机制提供理论依据。
方法 30只出生18 d的树鼩幼崽随机被分为6组(每组5只):弱视模型N1组(左眼缝合2个月);弱视模型N2组(左眼缝合1个月);弱视恢复模型N3组(左眼缝合1个月后打开1个月);弱视恢复模型N4组(左眼缝合1个月后打开换缝合右眼1个月);C1对照组(双眼正常视物2个月);C2对照组(双眼正常视物1个月)。模型建立成功后取视网膜行HE染色和透射电镜检查,观察在不同干预条件下树鼩视网膜各层组织学和超微结构变化。
结果 HE染色结果显示,与C2对照组相比,弱视模型N2组树鼩视网膜神经节细胞、双极细胞、视锥视杆细胞数量均明显减少(均为P<0.05),神经纤维层及各层细胞形态均有不同程度损伤。透射电镜结果显示,弱视模型N2组树鼩视网膜各细胞出现细胞核体积缩小、核不规则、异染色质增多、线粒体肿胀、嵴溶解消失、内质网池形成等现象。在形觉剥夺时间更长的弱视模型N1组树鼩中,视网膜细胞数量较弱视模型N2组明显下降(P<0.05),形态损伤更加严重。去除剥夺后,弱视恢复模型N3组树鼩视网膜各层细胞数量均明显增多(均为P<0.05),细胞形态与超微结构出现一定程度的恢复,但与C1、C2对照组相比仍有差距。
结论 形觉剥夺性弱视可引起弱视眼视网膜细胞出现病理性变化。形觉剥夺性弱视所引起的视网膜损伤具有可塑性。
Abstract:
Objective To investigate the retinal changes during the formation and recovery of amblyopia from the morphological aspect by establishing a form deprivation myopia (FDM) model in tree shrew, so as to provide a theoretical basis for further study of the mechanism of amblyopia formation and recovery.
Methods Thirty 18-day-old tree shrews were randomly divided into 6 groups, with 5 tree shrews in each group: amblyopia model N1 group (left eye sutured for 2 months), amblyopia model N2 group (left eye sutured for 1 month), amblyopia recovery model N3 group (left eye sutured for 1 month and opened for 1 month), amblyopia recovery model N4 group (left eye sutured for 1 month and opened with right eye sutured for 1 month), C1 control group (normal vision in both eyes for 2 months), and C2 control group (normal vision in both eyes for 1 month). After the modeling, retinas were extracted for hematoxylin-eosin (HE) staining and transmission electron microscopy to survey the histology and ultrastructure changes of the cells in each layer of the retinas under different interventions.
Results The HE staining showed that the number of retinal ganglion cells, bipolar cells, rod and cone cells in the retinas of tree shrews in the amblyopia model N2 group significantly reduced compared with those in the C2 control group (all P<0.05) and the cell morphology of nerve fiber layer and other layers were damaged to different degrees. Transmission electron microscopy results showed that the retinal cells of the amblyopic model N2 group showed nuclear volume reduction, irregularity, heterochromatin increase, mitochondrial swelling, disappearance of cristae dissolution, and formation of endoplasmic reticulum pools. In the amblyopia model N1 group with more prolonged form deprivation, the number of retinal cells significantly decreased compared with that in the amblyopia model N2 group (P<0.05), and the morphological damage is more serious. After removal of deprivation, the number of retinal cells in all layers in the amblyopia recovery model N3 group increased significantly (all P<0.05); the cell morphology and ultrastructure recovered to a certain degree, but there was still a gap compared to C1 control group and C2 control group.
Conclusion FDM may cause pathological changes in the retinal cells of amblyopic eyes. Retinal damage caused by FDM is plastic.

参考文献/References:

[1] HASHEMI H,PAKZAD R,YEKTA A,BOSTAMZAD P,AGHAMIRSALIM M,SARDARI S,et al.Global and regional estimates of prevalence of amblyopia:a systematic review and meta-analysis[J].Strabismus,2018,26(4):168-183.
[2] NENTWICH M M.Amblyopia-basic principles and current diagnostic and therapeutic standards[J].Ophthalmologe,2019,116(4):391-404.
[3] MENDOLA J D,CONNER I P,ROY A,CHAN S T,SCHWARTZ T L,ODOM J V,et al.Voxel-based analysis of MRI detects abnormal visual cortex in children and adults with amblyopia[J].Hum Brain Mapp,2005,25(2):222-236.
[4] LI X,DUMOULIN S O,MANSOURI B,HESS R F.Cortical deficits in human amblyopia:their regional distribution and their relationship to the contrast detection deficit[J].Invest Ophthalmol Vis Sci,2007,48(4):1575-1591.
[5] LI J,JI P,YU M.Meta-analysis of retinal changes in unilateral amblyopia using optical coherence tomography[J].Eur J Ophthalmol,2015,25(5):400-409.
[6] KUSBECI T,KARTI O,KARAHAN E,OGUZTORELI M.The evaluation of anatomic and functional changes in unilateral moderate amblyopic eyes using optical coherence tomography and pupil cycle time[J].Curr Eye Res,2017,42(12):1725-1732.
[7] SINGH N,ROHATGI J,GUPTA V P,KUMAR V.Measurement of peripapillary retinal nerve fiber layer thickness and macular thickness in anisometropia using spectral domain optical coherence tomography:a prospective study[J].Clin Ophthalmol,2017,11:429-434.
[8] ALLEN B,SCHMITT M A,KUSHNER B J,ROKERS B.Retinothalamic white matter abnormalities in amblyopia[J].Invest Ophthalmol Vis Sci,2018,59(2):921-929.
[9] AN C L,ZHOU Y,YAN X K.Observation of acupoint thread-embedding on refractive amblyopia in children[J].Chin J Acu Mox,2021,41(7):747-750.
[10] KURT R A,BAYAR S A,ERCAN Z E,YAMAN PINARCI E,TEKINDAL M A,OTO S.Choroidal and macular thickness in eyes with amblyopia[J].Beyoglu Eye J,2021,6(4):320-327.
[11] LIU L L,WANG Y C,CAO M,LIU F,ZHANG S,LIU J,et al.Analysis of macular retinal thickness and microvascular system changes in children with monocular hyperopic anisometropia and severe amblyopia[J].Dis Markers,2022,2022:9431044.
[12] NISHIKAWA N,CHUA J,KAWAGUCHI Y,RO-MASE T,SCHMETTERER L,YANAGI Y,et al.Macular microvasculature and associated retinal layer thickness in pediatric amblyopia:magnification-corrected analyses[J].Invest Ophthalmol Vis Sci,2021,62(3):39.
[13] SASAKI E,SUEMIZU H,SHIMADA A,HANAZAWA K,OIWA R,KAMIOKA M,et al.Generation of transgenic non-human primates with germline transmission[J].Nature,2009,459(7246):523-527.
[14] KIORPES L.Development of vernier acuity and grating acuity in normally reared monkeys[J].Vis Neurosci,1992,9(3/4):243-251.
[15] MURPHY K M,MITCHELL D E.Vernier acuity of normal and visually deprived cats[J].Vision Res,1991,31(2):253-266.
[16] LA CHIOMA A,BONHOEFFER T,HBENER M.Disparity sensitivity and binocular integration in mouse visual cortex areas[J].J Neurosci,2020,40(46):8883-8899.
[17] HARWERTH R S,SMITH E L,BOLTZ R L,CRAWFORD M L,VON NOORDEN G K.Behavioral studies on the effect of abnormal early visual experience in monkeys:spatial modulation sensitivity[J].Vis Res,1983,23(12):1501-1510.
[18] MITCHELL D E.The extent of visual recovery from early monocular or binocular visual deprivation in kittens[J].J Physiol,1988,395:639-660.
[19] FAN Y,HUANG Z Y,CAO C C,CHEN C S,CHEN Y X,FAN D D,et al.Genome of the Chinese tree shrew[J].Nat Commun,2013,4:1426.
[20] ABBOTT C J,MCBRIEN N A,GRNERT U,PIANTA M J.Relationship of the optical coherence tomography signal to underlying retinal histology in the tree shrew (Tupaia belangeri)[J].Invest Ophthalmol Vis Sci,2009,50(1):414-423.
[21] 周广龙,杨冬梅,梁佳芮,陈黎,代蕊,张弛,等.形觉剥夺树鼩视皮质17区的可塑性[J].中国实验动物学报,2017,25(2):123-131.
ZHOU G L,YANG D M,LIANG J R,CHEN L,DAI R,ZHANG C,et al.Plastic visual cortex area 17 after form deprivation in the tree shrews[J].Acta Lab Anim Sci Sin,2017,25(2):123-131.
[22] 梁佳芮.树鼩形觉剥夺性弱视P-VEP和F-ERG变化研究[D].昆明:昆明医科大学,2017.
LIANG J R.Deprivation of tree shrew for visual evoked potential and electroretinogram detection[D].Kunming:Kunming Med Univ,2017.
[23] ANDALIB D,JAVADZADEH A,NABAI R,AMIZADEH Y.Macular and retinal nerve fiber layer thickness in unilateral anisometropic or strabismic amblyopia[J].J Pediatric Ophthalmol Strabismus,2013,50(4):218-221.
[24] ZHANG Y,LI Z,LIU S,FU Y,CHEN D,MENG Z,et al.Macular Morphologic and microvascular analysis in pseudophakic children with previous pediatric cataract using optical coherence tomography angiography[J].Ophthalmic Res,2022,65(5):540-545.
[25] NIYAZ L,YCEL O E,AR TRK N,TERZI O.Choroidal thickness in strabismus and amblyopia cases[J].Strabismus,2017,25(2):56-59.
[26] KANTARCI F A,TATAR M G,USLU H,COLAK H N,YILDIRIM A,GOKER H,et al.Choroidal and peripapillary retinal nerve fiber layer thickness in adults with anisometropic amblyopia[J].Eur J Ophthalmol,2015,25(5):437-442.
[27] KEE S Y,LEE S Y,LEE Y C.Thicknesses of the fovea and retinal nerve fiber layer in amblyopic and normal eyes in children[J].Korean J Ophthalmol,2006,20(3):177-181.
[28] REPKA M X,GOLDENBERG-COHEN N,EDWARDS A R.Retinal nerve fiber layer thickness in amblyopic eyes[J].Am J Ophthalmol,2006,142(2):247-251.
[29] DICKMANN A,PETRONI S,SALERNI A,DELL’OMO R,BALESTRAZZI E.Unilateral amblyopia:an optical coherence tomography study[J].J Aapos,2009,13(2):148-150.
[30] SOKOL S,NADLER D.Simultaneous electroretinograms and visually evoked potentials from adult amblyopes in response to a pattern stimulus[J].Invest Ophthalmol Vis Sci,1979,18(8):848-855.
[31] PERSSON H E,WANGER P.Pattern-reversal electroretinograms in squint amblyopia,artificial anisometropia and simulated eccentric fixation[J].Acta Ophthalmol,1982,60(1):123-132.
[32] ARDEN G B,WOODING S L.Pattern ERG in amblyopia[J].Invest Ophthalmol Vis Sci,1985,26(1):88-96.
[33] HESS R F,BAKER C L,VERHOEVE J N,KEESEY U T,FRANCE T D.The pattern evoked electroretinogram:its variability in normals and its relationship to amblyopia[J].Invest Ophthalmol Vis Sci,1985,26(11):1610-1623.
[34] SAMORAJSKI T,ORDY J M,KEEFE J R.Structural organization of the retina in the tree shrew (Tupaia glis)[J].J Cell Biol,1966,28(3):489-504.
[35] PETRY H M,ERICHSEN J T,SZL A.Immunocytochemical identification of photoreceptor populations in the tree shrew retina[J].Brain Res,1993,616(1/2):344-350.
[36] WEBBER A L.The functional impact of amblyopia[J].Clin Exp Optom,2018,101(4):443-450.
[37] MEIER K,GIASCHI D.Unilateral amblyopia affects two eyes:fellow eye deficits in amblyopia[J].Invest Ophthalmol Vis Sci,2017,58(3):1779-1800.
[38] COLLINS P M,TSANG W N.Growth and reproductive development in the male tree shrew (Tupaia belangeri) from birth to sexual maturity[J].Biol Reprod,1987,37(2):261-267.
[39] MURALI K,RAMESH A,MURTHY S R,GOYAL A.Binocular therapy as primary intervention in adults with anisometropic amblyopia[J].Taiwan J Ophthalmol,2022,12(3):317-324.
[40] LIU X Y,ZHANG Y W,GAO F,CHEN F,ZHANG J Y.Dichoptic perceptual training in children with amblyopia with or without patching history[J].Invest Ophthalmol Vis Sci,2021,62(6):4.
[41] VEDAMURTHY I,NAHUM M,BAVELIER D,LEVI D M.Mechanisms of recovery of visual function in adult amblyopia through a tailored action video game[J].Sci Rep,2015,5:8482.
[42] VAGGE A,FERRO DESIDERI L,TRAVERSO C E.An update on pharmacological treatment options for amblyopia[J].Int Ophthalmol,2020,40(12):3591-3597.
[43] KRAUS C L,CULICAN S M.New advances in amblyopia therapy I:binocular therapies and pharmacologic augmentation[J].Br J Ophthalmol,2018,102(11):1492-1496.

相似文献/References:

[1]李妍,李丽红,刘海,等.树鼩茄病镰刀菌性角膜炎房水中Th1/Th2炎性因子的变化[J].眼科新进展,2017,37(9):824.[doi:10.13389/j.cnki.rao.2017.0208]
 LI Yan,LI Li-Hong,LIU Hai,et al.Changes of Th1/Th2 inflammatory factors in the aqueous humor of tree shrews with fusarium solani keratitis[J].Recent Advances in Ophthalmology,2017,37(7):824.[doi:10.13389/j.cnki.rao.2017.0208]
[2]王智,邵威,袁学双,等.Wnt信号通路蛋白β-链蛋白和糖原合成酶激酶3β在单眼形觉剥夺性弱视大鼠视皮层的表达变化[J].眼科新进展,2019,39(9):825.[doi:10.13389/j.cnki.rao.2019.0187]
 WANG Zhi,SHAO Wei,YUAN Xue-Shuang,et al.Expression of correlation factors glycogen synthase kinase 3β and β-catenin of Wnt signal pathway in visual cortex of monocular form deprivation amblyopic rats[J].Recent Advances in Ophthalmology,2019,39(7):825.[doi:10.13389/j.cnki.rao.2019.0187]
[3]刘晶莹,余兰慧,古学军.单侧先天性白内障形觉剥夺性弱视眼、对侧眼与同龄正常眼黄斑区血流密度特征对比分析[J].眼科新进展,2021,41(10):974.[doi:10.13389/j.cnki.rao.2021.0205]
 LIU Jingying,YU Lanhui,GU Xuejun.Contrastive analysis of macular vascular density of unilateral congenital cataract caused form-vision deprivation amblyopia eyes, contralateral eyes and normal control eyes[J].Recent Advances in Ophthalmology,2021,41(7):974.[doi:10.13389/j.cnki.rao.2021.0205]
[4]李妍,李丽红,戴敏,等.真菌性角膜炎角膜组织NOD1、NF-κBp65表达的变化以及炎症细胞浸润情况[J].眼科新进展,2023,43(2):089.[doi:10.13389/j.cnki.rao.2023.0018]
 LI Yan,LI Lihong,DAI Min,et al.Changes in expression of nucleotide-binding oligomerization domain-containing protein 1 and nuclear factor kappa-Bp65 and infiltration of inflammatory cells in the cornea with fungal keratitis[J].Recent Advances in Ophthalmology,2023,43(7):089.[doi:10.13389/j.cnki.rao.2023.0018]
[5]李亚东,郑广瑛,骆瑶,等.形觉剥夺性弱视儿童脑灰质的变化:基于体素的形态测量研究[J].眼科新进展,2023,43(7):565.[doi:10.13389/j.cnki.rao.2023.0114]
 LI Yadong,ZHENG Guangying,LUO Yao,et al.Changes in gray matter volume in children with form-deprivation amblyopia by voxel-based morphometry[J].Recent Advances in Ophthalmology,2023,43(7):565.[doi:10.13389/j.cnki.rao.2023.0114]

备注/Memo

备注/Memo:
云南省卫生健康委员会医学领军人才培养计划(编号:L-2018018);云南大学第十四届研究生科研创新项目(编号:KC-22221033)
更新日期/Last Update: 2023-07-05