[1]李亚东,郑广瑛,骆瑶,等.形觉剥夺性弱视儿童脑灰质的变化:基于体素的形态测量研究[J].眼科新进展,2023,43(7):565-570.[doi:10.13389/j.cnki.rao.2023.0114]
 LI Yadong,ZHENG Guangying,LUO Yao,et al.Changes in gray matter volume in children with form-deprivation amblyopia by voxel-based morphometry[J].Recent Advances in Ophthalmology,2023,43(7):565-570.[doi:10.13389/j.cnki.rao.2023.0114]
点击复制

形觉剥夺性弱视儿童脑灰质的变化:基于体素的形态测量研究/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
43卷
期数:
2023年7期
页码:
565-570
栏目:
应用研究
出版日期:
2023-07-05

文章信息/Info

Title:
Changes in gray matter volume in children with form-deprivation amblyopia by voxel-based morphometry
作者:
李亚东郑广瑛骆瑶迟英杰文宝红张晓盼
450052 河南省郑州市,郑州大学第一附属医院眼科(李亚东,郑广瑛,骆瑶,迟英杰);450052 河南省郑州市,郑州大学第一附属医院磁共振科(文宝红,张晓盼)
Author(s):
LI Yadong1ZHENG Guangying1LUO Yao1CHI Yingjie1WEN Baohong2ZHANG Xiaopan2
1.Department of Ophthalmology,the First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,Henan Province,China
2.Department of Magnetic Resonance Imaging,the First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,Henan Province,China
关键词:
形觉剥夺性弱视基于体素的形态测量学磁共振成像
Keywords:
form-deprivation amblyopia voxel-based morphometry magnetic resonance imaging
分类号:
R779.7
DOI:
10.13389/j.cnki.rao.2023.0114
文献标志码:
A
摘要:
目的 探讨形觉剥夺性弱视儿童全脑灰质体积(GMV)的变化。
方法 收集 2020年 8月至 2022 年1月于本院眼科中心就诊的形觉剥夺性弱视儿童25例35眼,其中单眼形觉剥夺性弱视组15例15眼、双眼形觉剥夺性弱视组10例20眼。同期门诊招募年龄、性别匹配的正常对照组受检者11名22眼。单眼形觉剥夺性弱视组、双眼形觉剥夺性弱视组和正常对照组受检者进行3.0T磁共振成像(MRI)扫描以获得结构像MRI图。应用基于体素的形态测量学(VBM)方法及脑成像数据处理和分析软件进行结构像MRI数据处理和统计分析,采用单因素方差分析对三组受检者之间的GMV进行比较。
结果 三组受检者之间总颅内容积的差异无统计学意义(P=0.379)。三组受检者之间GMV的差异有统计学意义(P=0.009);其中单眼形觉剥夺性弱视组、双眼形觉剥夺性弱视组与正常对照组受检者之间GMV的差异均有统计学意义(P=0.004、0.019),而单眼形觉剥夺性弱视组、双眼形觉剥夺性弱视组患者之间GMV的差异无统计学意义(P=0.673)。 与正常对照组相比,单眼形觉剥夺性弱视组患者在左侧颞中回、左侧楔叶和左侧额中回的GMV均减少(均为P<0.05),在左侧额上回、左侧额下回岛盖部、左侧顶上小叶、右侧颞下回和右侧小脑前叶的GMV均增加(均为P<0.05)。与正常对照组相比,双眼形觉剥夺性弱视组患者在右侧额叶、双侧小脑后叶、双侧小脑前叶和双侧海马旁回的GMV减少(均为P<0.05),在左侧颞上回和右侧顶上小叶的GMV增加(均为P<0.05)。与双眼形觉剥夺性弱视组相比,单眼形觉剥夺性弱视组患者在右侧楔前叶、右侧颞中回、右侧辅助运动区、左侧额中回、左侧前扣带回、左侧中央前回、双侧中扣带回、双侧岛叶和双侧中央后回的GMV增加(均为P<0.05),未见GMV显著减少的脑区(P>0.05)。
结论 形觉剥夺性弱视儿童脑灰质的改变不仅局限于初、高级视皮层,也涉及其他皮层及联络通路,且单、双眼弱视变化具有差异性。
Abstract:
Objective To investigate the changes in gray matter volume (GMV) in children with form-deprivation amblyopia (FDA).
Methods From August 2020 to January 2022,25 children (35 eyes) with FDA admitted to the Eye Center of our hospital were selected and divided into the monocular FDA group (15 children,15 eyes) and the binocular FDA group (10 children,20 eyes).During the same period,11 age- and gender-matched children (22 eyes) were enrolled in the normal control (NC) group.All children were examined with 3.0T magnetic resonance imaging (MRI) scanning to obtain structural images.Voxel-based morphometry (VBM) and brain imaging data processing & analysis software were used for structural image data processing and analysis.The GMV was compared among the three groups by one-way analysis of variance.
Results No significant difference was found in total intracranial volume among the three groups (P=0.379),but there was a significant difference in GMV among the groups (P=0.009).GMV in the monocular and binocular FDA groups was significantly different from that in the NC group (P=0.004,P=0.019),but showed no significant difference between the monocular and binocular FDA groups (P=0.673).Compared with the NC group,the GMV in the monocular FDA group decreased in the left middle temporal gyrus,left cuneus,and left middle frontal gyrus,and increased in the left superior frontal gyrus,left opercular part of the inferior frontal gyrus,left superior parietal lobule,right inferior temporal gyrus,and right anterior cerebellar lobe (all P<0.05).Compared with the NC group,the GMV in the binocular FDA group decreased in the right frontal lobe,bilateral posterior cerebellar lobe,bilateral anterior cerebellar lobe,and bilateral parahippocampal gyrus,and increased in the left superior temporal gyrus and right superior parietal lobule (all P<0.05).Compared with the binocular FDA group,the GMV in the monocular FDA group increased in the right precuneus,right middle temporal gyrus,right supplementary motor area,left middle frontal gyrus,left anterior cingulate gyrus,left precentral gyrus,bilateral middle cingulate gyrus,bilateral insula,and bilateral postcentral gyrus (all P<0.05),but no significant reductions were observed in the brain regions (P>0.05).
Conclusion The GMV changes in children with FDA are not only limited to the primary and higher visual cortices,but also related to other cortices and connecting pathways,and the changes are different between monocular and binocular amblyopia.

参考文献/References:

[1] 金涵,易敬林,谢晖,肖凡,王文娟,舒秀梅,等.学龄前儿童视觉发育状况调查研究[J].中华眼科杂志,2011,47(12):1102-1106.
JIN H,YI J L,XIE H,XIAO F,WANG W J,SHU X M,et al.A study on visual development among preschool children[J].Chin J Ophthalmol,2011,47(12):1102-1106.
[2] HE M,HUANG W,ZHENG Y,HUANG L,ELLWEIN L B.Refractive error and visual impairment in school children in rural southern China[J].Ophthalmology,2007,114(2):374-382.
[3] 杨旭波.弱视视觉缺陷相关研究进展[J].中华实验眼科杂志,2017,35(12):1139-1142.
YANG X B.Research progress on visual defects of amblyopia[J].Chin J Exp Ophthalmol,2017,35(12):1139-1142.
[4] 吴叶红,王曦琅.屈光参差性弱视与斜视性弱视患儿视放射发育情况对比研究:基于扩散张量成像检查[J].眼科新进展,2021,41(4):346-349.
WU Y H,WANG X L.Comparison of optic radiation between anisometropic and strabismic amblyopia based on diffusion tensor imaging[J].Rec Adv Ophthalmol,2021,41(4):346-349.
[5] XIAO J X,XIE S,YE J T,LIU H H,GAN X L,GONG G L,et al.Detection of abnormal visual cortex in children with amblyopia by voxel-based morphometry[J].Am J Ophthalmol,2007,143(3):489-493.
[6] FAN H,WANG Y,TANG X,YANG L,SONG W,ZOU Y.Expression of early growth responsive gene-1 in the visual cortex of monocular form deprivation amblyopic kittens[J].BMC Ophthalmol,2021,21(1):394.
[7] 王智,邵威,袁学双,彭辉灿,费志刚,肖启国,等.Wnt信号通路蛋白β-链蛋白和糖原合成酶激酶3β在单眼形觉剥夺性弱视大鼠视皮层的表达变化[J].眼科新进展,2019,39(9):825-828.
WANG Z,SHAO W,YUAN X S,PENG H C,FEI Z G,XIAO Q G,et al.Expression of correlation factors glycogen synthase kinase 3β and β-catenin of Wnt signal pathway in visual cortex of monocular form deprivation amblyopic rats[J].Rec Adv Ophthalmol,2019,39(9):825-828.
[8] 刘圣源,张敬,张权,伊慧明,张丽红,李威,等.基于体素的形态测量学方法研究屈光参差性弱视患儿的相关区域脑结构[J].中华放射学杂志,2012,46(1):45-48.
LIU S Y,ZHANG J,ZHANG Q,YI H M,ZHANG L H,LI W,et al.An optimized voxel-based morphometry study in the evaluation of brain structural abnormalities in anisometropic amblyopia patients[J].Chin J Radiol,2012,46(1):45-48.
[9] 伍叶,刘陇黔.弱视患者大脑功能与结构异常的研究进展[J].中华眼科杂志,2017,53(5):392-395.
WU Y,LIU L Q.Research advances on cortical functional and structural deficits of amblyopia[J].Chin J Ophthalmol,2017,53(5):392-395.
[10] 中华医学会眼科学分会斜视与小儿眼科学组.弱视诊断专家共识(2011年)[J].中华眼科杂志,2011,47(8):768.
Chinese Association for Pediatric Ophthalmology and Strabismus.Expert consensus on diagnosis of amblyopia(2011)[J].Chin J Ophthalmol,2011,47(8):768.
[11] 谢晟,叶锦棠,肖江喜.弱视儿童和正常儿童的灰质VBM比较研究[J].中国斜视与小儿眼科杂志,2007,15(1):1-3.
XIE S,YE J T,XIAO J X.Comparison of the gray matter in children with amblyopia by VBM study[J].Chin J Strabismus Pediatr Ophthalmol,2007,15(1):1-3.
[12] LI Q,JIANG Q,GUO M,LI Q,CAI C,YIN X.Grey and white matter changes in children with monocular amblyopia:voxel-based morphometry and diffusion tensor imaging study[J].Br J Ophthalmol,2013,97(4):524-529.
[13] GALLETTI C,FATTORI P.The dorsal visual stream revisited:stable circuits or dynamic pathways?[J].Cortex,2018,98(1):203-217.
[14] CONWAY B R.The organization and operation of inferior temporal cortex[J].Annu Rev Vis Sci,2018,4(1):381-402.
[15] PISELLA L.Visual perception is dependent on visuospatial working memory and thus on the posterior parietal cortex[J].Ann Phys Rehabil Med,2017,60(3):141-147.
[16] 肖曼君,李亚军,肖恩华.弱视的功能MRI研究现状与进展[J].磁共振成像,2013,4(6):463-467.
XIAO M J,LI Y J,XIAO E H.The research status and advance of functional MRI in amblyopia[J].Chin J Magn Reson Imaging,2013,4(6):463-467.
[17] SELVANAYAGAM J,JOHNSTON K D,SCHAEFFER D J,HAYRYNEN L K,EVERLING S.Functional localization of the frontal eye fields in the common marmoset using microstimulation[J].J Neurosci,2019,39(46):9197-9206.
[18] ONO Y,ZHANG X,NOAH J A,DRAVIDA S,HIRSCH J.Bidirectional connectivity between Broca’s area and Wernicke’s area during interactive verbal communication[J].Brain Connect,2022,12(3):210-222.
[19] SCHMEHL M N,GROH J M.Visual signals in the mammalian auditory system[J].Annu Rev Vis Sci,2021,7(1):201-223.
[20] AMINOFF E M,KVERAGA K,BAR M.The role of the parahippocampal cortex in cognition[J].Trends Cogn Sci,2013,17(8):379-390.
[21] NITSCHKE M F,ARP T,STAVROU G,ERDMANN C,HEIDE W.The cerebellum in the cerebro-cerebellar network for the control of eye and hand movements-an fMRI study[J].Prog Brain Res,2005,148:151-164.
[22] 黄煜峰,周逸峰.基于功能连接的屈光参差性弱视视觉网络损伤研究[J].北京生物医学工程,2018,37(3):246-251.
HUANG Y F,ZHOU Y F.Research on visual network of anisometropic amblyopia with functional connectivity[J].Beijing Biomed Eng,2018,37(3):246-251.
[23] 王浩然,张希,王天月,李倩,李青吉,郭明霞.屈光参差性弱视儿童脑网络功能连接的fMRI研究[J].天津医科大学学报,2018,24(6):484-488.
WANG H R,ZHANG X,WANG T Y,LI Q,LI Q J,GUO M X.FMRI study of brain functional connectivity in children with anisometropicamblyopia[J].J Tianjin Med Univ,2018,24(6):484-488.

相似文献/References:

[1]王智,邵威,袁学双,等.Wnt信号通路蛋白β-链蛋白和糖原合成酶激酶3β在单眼形觉剥夺性弱视大鼠视皮层的表达变化[J].眼科新进展,2019,39(9):825.[doi:10.13389/j.cnki.rao.2019.0187]
 WANG Zhi,SHAO Wei,YUAN Xue-Shuang,et al.Expression of correlation factors glycogen synthase kinase 3β and β-catenin of Wnt signal pathway in visual cortex of monocular form deprivation amblyopic rats[J].Recent Advances in Ophthalmology,2019,39(7):825.[doi:10.13389/j.cnki.rao.2019.0187]
[2]刘晶莹,余兰慧,古学军.单侧先天性白内障形觉剥夺性弱视眼、对侧眼与同龄正常眼黄斑区血流密度特征对比分析[J].眼科新进展,2021,41(10):974.[doi:10.13389/j.cnki.rao.2021.0205]
 LIU Jingying,YU Lanhui,GU Xuejun.Contrastive analysis of macular vascular density of unilateral congenital cataract caused form-vision deprivation amblyopia eyes, contralateral eyes and normal control eyes[J].Recent Advances in Ophthalmology,2021,41(7):974.[doi:10.13389/j.cnki.rao.2021.0205]
[3]赵秋语,陈黎,胡敏.树鼩形觉剥夺性弱视模型的视网膜形态变化[J].眼科新进展,2023,43(7):520.[doi:10.13389/j.cnki.rao.2023.0105]
 ZHAO Qiuyu,CHEN Li,HU Min.Retinal morphological changes in tree shrew model with form deprivation amblyopia[J].Recent Advances in Ophthalmology,2023,43(7):520.[doi:10.13389/j.cnki.rao.2023.0105]

更新日期/Last Update: 2023-07-05