[1]李鹏飞,鲍思洁,王从玉,等.ALKBH5对紫外线诱导的晶状体上皮细胞氧化损伤模型中DNA损伤修复的影响[J].眼科新进展,2022,42(11):847-852.[doi:10.13389/j.cnki.rao.2022.0175]
 LI Pengfei,BAO Sijie,WANG Congyu,et al.Effect of ALKBH5 on DNA repair in lens epithelial cells exposed to ultraviolet-induced oxidative damage[J].Recent Advances in Ophthalmology,2022,42(11):847-852.[doi:10.13389/j.cnki.rao.2022.0175]
点击复制

ALKBH5对紫外线诱导的晶状体上皮细胞氧化损伤模型中DNA损伤修复的影响/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
42卷
期数:
2022年11期
页码:
847-852
栏目:
实验研究
出版日期:
2022-11-05

文章信息/Info

Title:
Effect of ALKBH5 on DNA repair in lens epithelial cells exposed to ultraviolet-induced oxidative damage
作者:
李鹏飞鲍思洁王从玉王思文孙诚浩康丽华管怀进
226001 江苏省南通市,南通大学附属医院眼科,南通大学医学院
Author(s):
LI PengfeiBAO SijieWANG CongyuWANG SiwenSUN ChenghaoKANG LihuaGUAN Huaijin
Department of Ophthalmology,the Affiliated Hospital of Nantong University,Medical School of Nantong University,Nantong 226001,Jiangsu Province,China
关键词:
年龄相关性白内障DNA损伤修复晶状体上皮细胞紫外线BN6-甲基腺苷ALKBH5
Keywords:
age-related cataract DNA repair lens epithelial cells ultraviolet B N6-methyladenosine ALKBH5
分类号:
R776
DOI:
10.13389/j.cnki.rao.2022.0175
文献标志码:
A
摘要:
目的 探究N6-甲基腺苷(m6A)去甲基化酶ALKBH5对紫外线诱导的晶状体上皮细胞(LEC)氧化损伤模型中DNA损伤修复的影响。方法 运用qRT-PCR和免疫印迹实验检测年龄相关性白内障(ARC)患者和对照组晶状体前囊膜上皮细胞中ALKBH5的mRNA和蛋白的表达。通过紫外线B(UVB)构建晶状体上皮细胞株SRA01/04细胞氧化损伤模型和靶向ALKBH5设计小干扰RNA(siRNA)转染构建敲降模型,运用qRT-PCR和免疫印迹实验检测氧化损伤模型和敲降模型中ALKBH5的mRNA和蛋白表达。运用CCK-8法检测Control组、UVB组、UVB+siNC组和UVB+siALKBH5#3组中SRA01/04细胞活力变化。免疫荧光染色检测UVB+siNC组和UVB+siALKBH5#3组中15A3的荧光强度变化。运用qRT-PCR检测转染对照siNC组和转染siALKBH5#3组中11个DNA氧化损伤修复基因(ODRGs)的mRNA表达变化。结果 在ARC患者的晶状体前囊膜上皮细胞中,ALKBH5的mRNA和蛋白表达水平均显著升高。在UVB以时间梯度诱导SRA01/04的细胞氧化损伤模型中,ALKBH5的mRNA和蛋白表达水平均呈上升后下降趋势,其中UVB照射10 min后ALKBH5 mRNA和蛋白表达升高最为显著。ALKBH5敲降效率结果显示,与转染对照siNC组相比,转染靶向ALKBH5的siRNA后,ALKBH5的mRNA和蛋白表达均显著下降。CCK-8法检测结果显示,与UVB+siNC组相比,UVB+siALKBH5#3组SRA01/04细胞活力明显降低。免疫荧光染色检测结果显示,与UVB+siNC组相比,UVB+siALKBH5#3组SRA01/04细胞内DNA氧化损伤指标15A3染色显著增加。同时,与转染对照siNC组相比,转染ALKBH5#3组SRA01/04细胞的ODRGs中,TREX1、FANCD2、LIG1、MSH2、MSH3、RPA2、SMUG1、XRCC6 mRNA的表达均显著上升,DCLRE1A mRNA的表达显著下降,MGMT和MRE11A mRNA的表达则未见明显差异。结论 m6A去甲基化酶ALKBH5在UVB诱导的LEC氧化损伤模型中诱导性表达上升,敲降ALKBH5可促进LEC内大部分ODRGs表达升高,参与调控LEC内损伤DNA的修复,阻止ARC的发生。
Abstract:
Objective To investigate the effect of N6-methyladenosine (m6A)-demethylase ALKBH5 on the repair of damaged DNA in lens epithelial cells (LECs) exposed to ultraviolet (UV)-induced oxidative damage. Methods The mRNA and protein levels of ALKBH5 in anterior LECs of age-related cataract (ARC) patients and controls were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. The SRA01/04 oxidative damage model was constructed by UVB and the knockdown model was constructed by transfecting SRA01/04 cells with small interfering RNA (siRNA) targeting ALKBH5. The mRNA and protein levels of ALKBH5 in the oxidative damage and knockdown models were evaluated by qRT-PCR and Western blot. Cell viability in the control group, UVB group, UVB+siNC group, and UVB+siALKBH5#3 group was determined by CCK8. The fluorescence intensity of damaged DNA marker 15A3 in the UVB+siNC group and UVB+siALKBH5#3 group was measured by immunofluorescence staining. The mRNA expression of 11 DNA oxidative damage repair genes (ODRGs) in the transfection control siNC and transfection siALKBH5#3 groups was assessed by qRT-PCR. Results The mRNA and protein levels of ALKBH5 dramatically increased in anterior LECs of ARC patients. The mRNA and protein levels of ALKBH5 in the UVB-induced oxidative damage model increased at first and then decreased. After 10 minutes of UVB radiation, the mRNA and protein levels of ALKBH5 increased most significantly. The knockdown efficiency of ALKBH5 revealed that the mRNA and protein levels of ALKBH5 notably decreased after transfection with siRNA targeting ALKBH5 when compared with the transaction control siNC group. CCK8 assay results showed that compared with the UVB+siNC group, cell viability in the UVB+siALKBH5#3 group was significantly reduced. Immunofluorescence staining results showed that compared with the UVB+siNC group, the fluorescence intensity of the DNA oxidative damage marker 15A3 in the UVB+siALKBH5#3 group significantly increased. Compared with the transfection control siNC group, the mRNA expression of TREX1, FANCD2, LIG1, MSH2, MSH3, RPA2, SMUG1, and XRCC6 among ODRGs in the transaction ALKBH5#3 group increased significantly, the mRNA expression of DCLRE1A decreased significantly, and the mRNA expression of MGMT and MRE11A showed no significant differences. Conclusion The expression of m6A demethylase ALKBH5 increases in the UVB-induced LEC oxidative damage model. The knockdown of ALKBH5 can promote the expression of most ODRGs, regulate the repair of damaged DNA in LECs, and prevent the occurrence of ARC.

参考文献/References:

[1] BLINDNESS G B D,VISION IMPAIRMENT C,VISION LOSS EXPERT GROUP OF THE GLOBAL BURDEN OF DISEASE S.Causes of blindness and vision impairment in 2020 and trends over 30 years,and prevalence of avoidable blindness in relation to VISION 2020:the right to sight:an analysis for the Global Burden of Disease Study[J].Lancet Glob Health,2021,9(2):e144-e160.
[2] EROL TINAZTEPE O,AY M,ESER E.Nuclear and mitochondrial DNA of age-related cataract patients are susceptible to oxidative damage[J].Curr Eye Res,2017,42(4):583-588.
[3] KANTOROW M,HAWSE J R,COWELL T L,BENHAMED S,PIZARRO G O,REDDY V N,et al.Methionine sulfoxide reductase A is important for lens cell viability and resistance to oxidative stress[J].Proc Natl Acad Sci U S A,2004,101(26):9654-9659.
[4] TRUSCOTT R J.Age-related nuclear cataract-oxidation is the key[J].Exp Eye Res,2005,80(5):709-725.
[5] SU S,YAO Y,ZHU R,LIANG C,JIANG S,HU N,et al.The associations between single nucleotide polymorphisms of DNA repair genes,DNA damage,and age-related cataract:Jiangsu Eye Study[J].Invest Ophthalmol Vis Sci,2013,54(2):1201-1207.
[6] WANG Y,ZHANG J,WU J,GUAN H.Expression of DNA repair genes in lens cortex of age-related cortical cataract[J].Exp Mol Pathol,2017,102(2):219-223.
[7] SORTE K,SUNE P,BHAKE A,SHIVKUMAR V B,GANGANE N,BASAK A.Quantitative assessment of DNA damage directly in lens epithelial cells from senile cataract patients[J].Mol Vis,2011,17:1-6.
[8] XIANG Y,LAURENT B,HSU C H,NACHTERGAELE S,LU Z,SHENG W,et al.RNA m6A methylation regulates the ultraviolet-induced DNA damage response[J].Nature,2017,543(7646):573-576.
[9] SVOBODOVA KOVARIKOVA A,STIXOVA L,KOVARIK A,KOMURKOVA D,LEGARTOVA S,FAGHERAZZI P,et al.N6-adenosine methylation in RNA and a reduced m3G/TMG level in non-coding RNAs appear at microirradiation-induced DNA lesions[J].Cells,2020,9(2):360.
[10] JIA G,FU Y,HE C.Reversible RNA adenosine methylation in biological regulation[J].Trends Genet,2013,29(2):108-115.
[11] WANG X,LU Z,GOMEZ A,HON G C,YUE Y,HAN D,et al.N6-methyladenosine-dependent regulation of messenger RNA stability[J].Nature,2014,505(7481):117-120.
[12] WANG X,ZHAO B S,ROUNDTREE I A,LU Z,HAN D,MA H,et al.N6-methyladenosine modulates messenger RNA translation efficiency[J].Cell,2015,161(6):1388-1399.
[13] GUO X,LI K,JIANG W,HU Y,XIAO W,HUANG Y,et al.RNA demethylase ALKBH5 prevents pancreatic cancer progression by post transcriptional activation of PER1 in an m6A-YTHDF2-dependent manner[J].Mol Cancer,2020,19(1):91.
[14] SONG H,FENG X,ZHANG H,LUO Y,HUANG J,LIN M,et al.METTL3 and ALKBH5 oppositely regulate m6A modification of TFEB mRNA,which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes[J].Autophagy,2019,15(8):1419-1437.
[15] AKULA D,O’CONNOR T R,ANINDYA R.Oxidative demethylase ALKBH5 repairs DNA alkylation damage and protects against alkylation-induced toxicity[J].Biochem Biophys Res Commun,2021,534:114-120.
[16] YU F,WEI J,CUI X,YU C,NI W,BUNGERT J,et al.Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response[J].Nucleic Acids Res,2021,49(10):5779-5797.
[17] LI P,YU H,ZHANG G,KANG L,QIN B,CAO Y,et al.Identification and characterization of N6-methyladenosine circRNAs and methyltransferases in the lens epithelium cells from age-related cataract[J].Invest Ophthalmol Vis Sci,2020,61(10):13.
[18] GALICHANIN K.Exposure to subthreshold dose of UVR-B induces apoptosis in the lens epithelial cells and does not in the lens cortical fibre cells[J].Acta Ophthalmol,2017,95(8):834-838.
[19] DE JAGER T L,COCKRELL A E,DU PLESSIS S S.Ultraviolet light induced generation of reactive oxygen species[J].Adv Exp Med Biol,2017,996:15-23.
[20] SLIMEN I B,NAJAR T,GHRAM A,DABBEBI H,BEN MRAD M,ABDRABBAH M.Reactive oxygen species,heat stress and oxidative-induced mitochondrial damage:a review[J].Int J Hyperthermia,2014,30(7):513-523.
[21] RECZEK C R,CHANDEL N S.ROS promotes cancer cell survival through calcium signaling[J].Cancer Cell,2018,33(6):949-951.
[22] DAVALLI P,MARVERTI G,LAURIOLA A,D’ARCA D.Targeting oxidatively induced DNA damage response in cancer:opportunities for novel cancer therapies[J].Oxid Med Cell Longev,2018,2018:2389523.
[23] SLOBODIN B,HAN R,CALDERONE V,VRIELINK J,LOAYZA-PUCH F,ELKON R,et al.Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation[J].Cell,2017,169(2):326-337.
[24] BATISTA P J,MOLINIE B,WANG J,QU K,ZHANG J,LI L,et al.m6A RNA modification controls cell fate transition in mammalian embryonic stem cells[J].Cell Stem Cell,2014,15(6):707-719.
[25] LIU Z X,LI L M,SUN H L,LIU S M.Link between m6A modification and cancers[J].Front Bioeng Biotechnol,2018,6:89.
[26] WANG S,LV W,LI T,ZHANG S,WANG H,LI X,et al.Dynamic regulation and functions of mRNA m6A modification[J].Cancer Cell Int,2022,22(1):48.
[27] NEIZER-ASHUN F,BHATTACHARYA R.Reality CHEK:understanding the biology and clinical potential of CHK1[J].Cancer Lett,2021,497:202-211.
[28] HUANG R,ZHOU P K.DNA damage repair:historical perspectives,mechanistic pathways and clinical translation for targeted cancer therapy[J].Signal Transduct Target Ther,2021,6(1):254.
[29] OZKUREDE U,KALA R,JOHNSON C,SHEN Z,MILLER R A,GARCIA G G.Cap-independent mRNA translation is upregulated in long-lived endocrine mutant mice[J].J Mol Endocrinol,2019,63(2):123-138.
[30] KOWALSKI-CHAUVEL A,LACORE M G,ARNAUDUC F,DELMAS C,TOULAS C,COHEN-JONATHAN-MOYAL E,et al.The m6A RNA demethylase ALKBH5 promotes radioresistance and invasion capability of glioma stem cells[J].Cancers (Basel),2020,13(1):40.
[31] LI F,WANG Y,ZHANG G,ZHOU J,YANG L,GUAN H.Expression and methylation of DNA repair genes in lens epithelium cells of age-related cataract[J].Mutat Res,2014,766/767:31-36.
[32] BARTEK J,LUKAS C,LUKAS J.Checking on DNA damage in S phase[J].Nat Rev Mol Cell Biol,2004,5(10):792-804.
[33] NEPAL M,CHE R,MA C,ZHANG J,FEI P.FANCD2 and DNA Damage[J].Int J Mol Sci,2017,18(8):1804.
[34] WANG C J,LAM W,BUSSOM S,CHANG H M,CHENG Y C.TREX1 acts in degrading damaged DNA from drug-treated tumor cells[J].DNA Repair (Amst),2009,8(10):1179-1189.
[35] YANG Y G,LINDAHL T,BARNES D E.Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease[J].Cell,2007,131(5):873-886.

相似文献/References:

[1]边领斋 刘巨平 魏瑞华 李筱荣 赵少贞 华宁 王铁成 李颖 任新军 梁娟 邹媛媛 赵小云 刘文洁.云南省高海拔农村多民族聚居区年龄相关性白内障危险因素调查[J].眼科新进展,2013,33(1):000.
[2]张虹 胡竹林.超声乳化术对高度近视合并年龄相关性白内障患者泪膜稳定性及泪液蛋白的影响[J].眼科新进展,2013,33(3):000.
[3]江志坚 薛敏 董健鸿 朱茂丽 王敏华.年龄相关性白内障患者角膜内皮细胞特征分析[J].眼科新进展,2013,33(10):000.
[4]徐欢欢,赵长霖,薛春燕,等. 年龄相关性白内障患者角膜Q值的分布及影响因素[J].眼科新进展,2014,34(7):681.[doi:10.13389/j.cnki.rao.2014.0187]
[5]周婧,管怀进. 实时荧光定量PCR技术在年龄相关性白内障患者GSTM1、GSTT1基因拷贝数变异检测中的应用[J].眼科新进展,2014,34(9):838.[doi:10.13389/j.cnki.rao.2014.0231]
[6]赵晓彬,张海芳,董素婷. 年龄相关性白内障角膜前表面高阶像差分析[J].眼科新进展,2015,35(4):359.[doi:10.13389/j.cnki.rao.2015.0096]
 ZHAO Xiao-Bin,ZHANG Hai-Fang,DONG Su-Ting. Analysis of anterior corneal higher-order aberrations in age-related cataract[J].Recent Advances in Ophthalmology,2015,35(11):359.[doi:10.13389/j.cnki.rao.2015.0096]
[7]王勇,管怀进.DNA修复基因在年龄相关性白内障患者晶状体皮质中表达的研究[J].眼科新进展,2016,36(4):310.[doi:10.13389/j.cnki.rao.2016.0084]
 WANG Yong,GUAN Huai-Jin.Expression of DNA repair genes in lens cortex of agerelated cataract[J].Recent Advances in Ophthalmology,2016,36(11):310.[doi:10.13389/j.cnki.rao.2016.0084]
[8]顾珊珊,戎晗,张国伟,等.单核苷酸多态性与年龄相关性白内障的研究进展[J].眼科新进展,2016,36(7):691.[doi:10.13389/j.cnki.rao.2016.0184]
 GU Shan-Shan,RONG Han,ZHANG Guo-Wei,et al.Progress on single nucleotide polymorphism and agerelated cataract[J].Recent Advances in Ophthalmology,2016,36(11):691.[doi:10.13389/j.cnki.rao.2016.0184]
[9]谭钢,吴安花,邵毅,等.miR-210靶向沉默Bcl-2诱导人晶状体上皮细胞凋亡[J].眼科新进展,2016,36(8):701.[doi:10.13389/j.cnki.rao.2016.0186]
 TAN Gang,WU An-Hua,SHAO Yi,et al.MiR-210 induced human lens epithelial cell apoptosis by target silencing Bcl-2[J].Recent Advances in Ophthalmology,2016,36(11):701.[doi:10.13389/j.cnki.rao.2016.0186]
[10]王勇,杨梅,管怀进.ERCC6基因单核苷酸多态性与年龄相关性白内障的关联研究[J].眼科新进展,2016,36(11):1029.[doi:10.13389/j.cnki.rao.2016.0274]
 WANG Yong,YANG Mei,GUAN Huai-Jin.Association of ERCC6 gene single nucleotide polymorphisms with age-related cataract[J].Recent Advances in Ophthalmology,2016,36(11):1029.[doi:10.13389/j.cnki.rao.2016.0274]
[11]王从玉,李鹏飞,王思文,等.SYVN1泛素化降解XRCC5对晶状体上皮细胞DNA氧化损伤的影响[J].眼科新进展,2023,43(10):761.[doi:10.13389/j.cnki.rao.2023.0153]
 WANG Congyu,LI Pengfei,WANG Siwen,et al.Effects of SYVN1-mediated ubiquitination and degradation of XRCC5 on DNA oxidative damage in lens epithelial cells[J].Recent Advances in Ophthalmology,2023,43(11):761.[doi:10.13389/j.cnki.rao.2023.0153]

备注/Memo

备注/Memo:
国家自然科学基金面上项目(编号:82171038,81974129);国家自然科学青年基金项目(编号:82101101)
更新日期/Last Update: 2022-11-05