[1]曾澳,闫语,王淑荣,等.Smad蛋白调控角膜新生血管发生发展的研究进展[J].眼科新进展,2022,42(1):075-78.[doi:10.13389/j.cnki.rao.2022.0017]
 ZENG Ao,YAN Yu,WANG Shurong,et al.Research progress of Smad protein in regulating the occurrence and development of corneal neovascularization[J].Recent Advances in Ophthalmology,2022,42(1):075-78.[doi:10.13389/j.cnki.rao.2022.0017]
点击复制

Smad蛋白调控角膜新生血管发生发展的研究进展/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
42卷
期数:
2022年1期
页码:
075-78
栏目:
文献综述
出版日期:
2022-01-05

文章信息/Info

Title:
Research progress of Smad protein in regulating the occurrence and development of corneal neovascularization
作者:
曾澳闫语王淑荣张妍何宇茜
130041 吉林省长春市,吉林大学第二医院眼科中心(曾澳,闫语,王淑荣,张妍,何宇茜);130021 吉林省长春市,吉林大学白求恩医学部(曾澳,闫语)
Author(s):
ZENG Ao12YAN Yu12WANG Shurong1ZHANG Yan1HE Yuxi1
1.Department of Ophthalmology,the Second Hospital of Jilin University,Changchun 130041,Jilin Province,China
2.Bethune College of Medicine,Jilin University,Changchun 130021,Jilin Province,China
关键词:
Smad蛋白角膜新生血管转化生长因子-β骨形态发生蛋白茎细胞尖细胞
Keywords:
Smad protein corneal neovascularization transforming growth factor β bone morphogenetic protein stem cells tip cells
分类号:
R772.2
DOI:
10.13389/j.cnki.rao.2022.0017
文献标志码:
A
摘要:
角膜新生血管(CNV)是一种严重的致盲性病理改变,与多种眼表疾病的发生发展密切相关。在CNV发生发展过程中,多种蛋白参与调控。研究表明,Smad蛋白可通过多种信号通路影响CNV的发生发展。本文就近年来Smad蛋白调控CNV发生发展的研究进展作一综述。
Abstract:
Corneal neovascularization (CNV) is a serious blinding lesion closely associated with the occurrence and development of various ocular surface diseases. In the process of CNV, many proteins participate in the regulation. Studies have shown that Smad protein can influence the occurrence and development of CNV through multiple signaling pathways. This paper summarizes the research progress of Smad protein in regulating the occurrence and development of CNV.

参考文献/References:

[1] SHARIF Z,SHARIF W.Corneal neovascularization:updates on pathophysiology,investigations & management[J].Rom J Ophthalmol,2019,63(1):15-22.
[2] XU F,LIU C,ZHOU D,ZHANG L.TGF-β/SMAD pathway and its regulation in hepatic fibrosis[J].J Histochem Cytochem,2016,64(3):157-167.
[3] MACIAS M J,MASSAGU J.Structural determinants of Smad function in TGF-β signaling[J].Trends Biochem Sci,2015,40(6):296-308.
[4] HATA A,CHEN Y G.TGF-β signaling from receptors to smads[J].Cold Spring Harb Perspect Biol,2016,8(9):a022061.
[5] ZHANG Y.Non-Smad signaling pathways of the TGF-β family[J].Cold Spring Harb Perspect Biol,2017,9(2):a022129.
[6] YETKIN-ARIK Y B.Endothelial tip cells in vitro are less glycolytic and have a more flexible response to metabolic stress than non-tip cells[J].Sci Rep,2019,9(1):10414.
[7] KOON Y L,ZHANG S,RAHMAT M B,KOH C G,CHIAM K H.Enhanced Delta-Notch lateral inhibition model incorporating intracellular notch heterogeneity and tension-dependent rate of Delta-Notch binding that reproduces sprouting angiogenesis patterns[J].Sci Rep,2018,8(1):9519.
[8] NEDVETSKY P I.cAMP-dependent protein kinase a(PKA)regulates angiogenesis by modulating tip cell behavior in a notch-independent manner[J].Development,2016,143(19):3582-3590.
[9] KERR G,SHELDON H,CHAIKUAD A,ALFANO I,VON DELFT F,BULLOCK A N,et al.A small molecule targeting ALK1 prevents Notch cooperativity and inhibits functional angiogenesis[J].Angiogenesis,2015,18(2):209-217.
[10] BENN A,HIEPEN C,OSTERLAND M,SCHTTE C,ZWIJSEN A,KNAUS P.Role of bone morphogenetic proteins in sprouting angiogenesis:differential BMP receptor-dependent signaling pathways balance stalk vs.tip cell competence[J].FASEB J,2017,31(11):4720-4733.
[11] JARAD M,KUCZYNSKI E A,MORRISON J,VILORIA-PETIT A M,COOMBER B L.Release of endothelial cell associated VEGFR2 during TGF-β modulated angiogenesis in vitro[J].BMC Cell Biol,2017,18(1):10.
[12] ASPALTER M I.Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch[J].Nat Commun,2015,6:7264.
[13] ABDELFATTAH N S,AMGAD M,ZAYED A,HUSSEIN H,EL-BAKY E N.Molecular underpinnings of corneal angiogenesis:advances over the past decade[J].Int J Ophthalmol,2016,9(5):768-779.
[14] LIU S,ROMANO V,STEGER B,KAYE S B,HAMILL K J,WILLOUGHBY C E.Gene-based antiangiogenic applications for corneal neovascularization[J].Surv Ophthalmol,2018,63(2):193-213.
[15] LIU X,WANG S,WANG X,LIANG J,ZHANG Y.Recent drug therapies for corneal neovascularization[J].Chem Biol Drug Des,2017,90(5):653-664.
[16] VOICULESCU O B,ALEXANDRESCU C.Corneal neovascularization and biological therapy[J].J Med Life,2015,8(4):444-448.
[17] ASSIS P A,DE FIGUEIREDO-PONTES L L,LIMA A S,LEO V,CNDIDO L A,PINTO C T,et al.Halofuginone inhibits phosphorylation of SMAD-2 reducing angiogenesis and leukemia burden in an acute promyelocytic leukemia mouse model[J].J Exp Clin Canc Res,2015,34(1):65.
[18] OH M K,KIM I S.Involvement of placental growth factor upregulated via TGF-β1-ALK1-Smad1/5 signaling in prohaptoglobin-induced angiogenesis[J].PLoS One,2019,14(4):e0216289.
[19] SEYSTAHL K,TRITSCHLER I,SZABO E,TABATABAI G,WELLER M.Differential regulation of TGF-β-induced,ALK-5-mediated VEGF release by SMAD2/3 versus SMAD1/5/8 signaling in glioblastoma[J].Neuro Oncol,2015,17(2):254-265.
[20] HAQUE R,IUVONE P M,HE L,CHOI K S C,NGO A,GOKHALE S,et al.The microRNA-21 signaling pathway is involved in prorenin receptor(PRR)-induced VEGF expression in ARPE-19 cells under a hyperglycemic condition[J].Mol Vis,2017,23:251-262.
[21] NGUYEN V,HOUGH R,BERNAUDO S,PENG C.Wnt/β-catenin signalling in ovarian cancer:insights into its hyperactivation and function in tumorigenesis[J].J Ovarian Res,2019,12(1):122.
[22] WANG Y,WU Z,TIAN J,MI Y,REN X,KANG J,et al.Intermedin protects HUVECs from ischemia reperfusion injury via Wnt/β-catenin signaling pathway[J].Ren Fail,2019,41(1):159-166.
[23] LUO K.Signaling cross talk between TGF-β/Smad and other signaling pathways[J].Cold Spring Harb Perspect Biol,2017,9(1):a022137.
[24] TAIYAB A,HOLMS J,WEST-MAYS J A.β-Catenin/Smad3 interaction regulates transforming growth factor-β-induced epithelial to mesenchymal transition in the lens[J].Int J Mol Sci,2019,20(9):2078.
[25] VALLE A,LECARPENTIER Y,GUILLEVIN R,VALLE J N.Interactions between TGF-β1,canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis[J].Oncotarget,2017,8(52):90579-90604.
[26] ZHANG J,WANG S,HE Y,YAO B,ZHANG Y.Regulation of matrix metalloproteinases 2 and 9 in corneal neovascularization[J].Chem Biol Drug Des,2020,95(5):485-492.
[27] ROSHANDEL D,ESLANI M,BARADARAN-RAFII A,CHEUNG A Y,KURJI K,JABBEHDARI S,et al.Current and emerging therapies for corneal neovascularization[J].Ocul Surf,2018,16(4):398-414.
[28] VAN DYKEN P,LACOSTE B.Impact of metabolic syndrome on neuroinflammation and the blood-brain barrier[J].Front Neurosci,2018,12:930.
[29] LIU L J,YAO F J,LU G H,XU C G,XU Z,TANG K,et al.The role of the Rho/ROCK pathway in Ang II and TGF-β1-Induced atrial remodeling[J].PLoS One,2016,11(9):e0161625.
[30] JI H,TANG H,LIN H,MAO J,GAO L,LIU J,et al.Rho/rock cross-talks with transforming growth factor-β/Smad pathway participates in lung fibroblast-myofibroblast differentiation[J].Biomed Rep,2014,2(6):787-792.
[31] CAMPBELL D P,DOETZLHOFER A.Canonical notch signaling plays an instructive role in auditory supporting cell development[J].Sci Rep,2016,6:19484.
[32] COLOMBO M,GALLETTI S,GARAVELLI S,PLATONOVA N,PAOLI A,BASILE A,et al.Notch signaling deregulation in multiple myeloma:a rational molecular target[J].Oncotarget,2015,6(29):26826-26840.
[33] XIE F.Notch signaling pathway is involved in bFGF-induced corneal lymphangiogenesis and hemangiogenesis[J].J Ophthalmol,2019,2019:9613923.
[34] MOUILLESSEAUX P K.Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6[J].Nat Commun,2016,7:13247.
[35] ZAKHARI J S,ZABONICK J,GETTLER B,WILLIAMS S K.Vasculogenic and angiogenic potential of adipose stromal vascular fraction cell populations in vitro[J].In Vitro Cell Dev Biol Anim,2018,54(1):32-40.
[36] WANG Y,SHEN R W,HAN B,LI Z,XIONG L,ZHANG F Y,et al.Notch signaling mediated by TGF-β/Smad pathway in concanavalin A-induced liver fibrosis in rats[J].World J Gastroenterol,2017,23(13):2330-2336.
[37] NAKAGAWA T,LI J H,GARCIA G,MU W,PIEK E,BTTINGER E P,et al.TGF-beta induces proangiogenic and antiangiogenic factors via parallel but distinct Smad pathways[J].Kidney Int,2004,66(2):605-613.

相似文献/References:

[1]王军花 高桂平.Avastin不同给药途径对兔角膜新生血管及超微结构的影响[J].眼科新进展,2012,32(5):000.
[2]程文武 江萍 席祖莲 张汉武 訾世莉 聂军 董彩虹.蛹虫草提取物抑制大鼠角膜新生血管的实验研究[J].眼科新进展,2012,32(5):000.
[3]邹文进 刘祖国 刘曼丽 付馨余 赵静博 王松 黄海.多西环素与地塞米松抑制碱烧伤大鼠角膜新生血管的对比研究[J].眼科新进展,2013,33(8):000.
[4]彭日波 余玲.TGF-β/Smad信号通路在青光眼中的研究进展[J].眼科新进展,2013,33(12):000.
[5]罗杰,胡琦,史学良,等.As2O3 对兔角膜碱烧伤后IL-1β及VCAM-1表达的影响[J].眼科新进展,2014,34(5):414.[doi:10.13389/j.cnki.rao.2014.0114]
 LUO Jie,HU Qi.SHI Xue-Liang,Ll Dan-Dan,et al.Effects of As2O3 on IL-1β and VCAM-1 expression following corneal alkali burns in rabbits[J].Recent Advances in Ophthalmology,2014,34(1):414.[doi:10.13389/j.cnki.rao.2014.0114]
[6]郝瑞霖,杨炜,张奕霞,等.乙酰半胱氨酸对角膜新生血管形成过程中瘦素和PEDF表达的调节[J].眼科新进展,2014,34(8):718.[doi:10.13389/j.cnki.rao.2014.0196]
 HAO Rui-Lin,YANG Wei,ZHANG Yi-Xia,et al.Regulative effects of acetylcysteine on leptin and PEDF in corneal neovascularization[J].Recent Advances in Ophthalmology,2014,34(1):718.[doi:10.13389/j.cnki.rao.2014.0196]
[7]修立恒,刘洪涛,曾小平. iNOS对兔角膜碱烧伤后新生血管形成的影响[J].眼科新进展,2014,34(9):830.[doi:10.13389/j.cnki.rao.2014.0229]
[8]徐硕,张红.角膜新生血管药物治疗的最新进展[J].眼科新进展,2015,35(10):989.[doi:10.13389/j.cnki.rao.2015.0271]
 XU Shuo,ZHANG Hong.Recent advances in drug therapy of corneal neovascularization[J].Recent Advances in Ophthalmology,2015,35(1):989.[doi:10.13389/j.cnki.rao.2015.0271]
[9]王军梅,孙艳,周明明,等.兔角膜碱烧伤后角膜基质注射脐带间充质干细胞的疗效[J].眼科新进展,2016,36(7):622.[doi:10.13389/j.cnki.rao.2016.0165]
 WANG Jun-Mei,SUN Yan,ZHOU Ming-Ming,et al.Effects of corneal stromal injection of umbilical cord mesenchymal stem cells after rabbit corneal alkali burn[J].Recent Advances in Ophthalmology,2016,36(1):622.[doi:10.13389/j.cnki.rao.2016.0165]
[10]吴艳,叶芬,黄振平.不同浓度KH902对兔碱烧伤后角膜新生血管的抑制作用[J].眼科新进展,2016,36(8):720.[doi:10.13389/j.cnki.rao.2016.0191]
 WU Yan,YE Fen,HUANG Zhen-Ping.Inhibitive effects of different concentrations of KH902 eye drops on corneal neovascularization after rabbit corneal alkali burn[J].Recent Advances in Ophthalmology,2016,36(1):720.[doi:10.13389/j.cnki.rao.2016.0191]

备注/Memo

备注/Memo:
吉林省科技厅国际科技合作项目(编号:20200801016GH);吉林省科技厅自然科学基金(编号:20180101146JC)
更新日期/Last Update: 2022-01-05