[1]张凤俊,李晶明,刘秋平.糖尿病视网膜病变发病机制及潜在治疗研究进展[J].眼科新进展,2020,40(7):677-685.[doi:10.13389/j.cnki.rao.2020.0156]
 ZHANG Fengjun,LI Jingming,LIU Qiuping.Pathogenesis and potential treatment of diabetic retinopathy[J].Recent Advances in Ophthalmology,2020,40(7):677-685.[doi:10.13389/j.cnki.rao.2020.0156]
点击复制

糖尿病视网膜病变发病机制及潜在治疗研究进展/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
40卷
期数:
2020年7期
页码:
677-685
栏目:
文献综述
出版日期:
2020-07-05

文章信息/Info

Title:
Pathogenesis and potential treatment of diabetic retinopathy
作者:
张凤俊李晶明刘秋平
330006 江西省南昌市,南昌大学附属眼科医院眼科
Author(s):
ZHANG FengjunLI JingmingLIU Qiuping
Department of Ophthalmology, Affiliated Hospital of Nanchang University,Nanchang 330006, Jiangxi Province, China
关键词:
糖尿病视网膜病变炎症氧化应激硝基化应激表观遗传修饰线粒体损伤基因多态性视网膜神经变性血管内皮祖细胞功能障碍自噬昼夜节律
Keywords:
diabetic retinopathy inflammation oxidative stress nitrosative stress epigenetic modification mitochondrial damage gene polymorphism retinal neurodegeneration vascular endothelial progenitor cell dysfunction autophagy circadian rhythm
分类号:
R774.1
DOI:
10.13389/j.cnki.rao.2020.0156
文献标志码:
A
摘要:
随着人们生活方式以及饮食结构的改变,糖尿病逐渐成为全球公共卫生问题。世界卫生组织报道最新的全球糖尿病患者多达4.22亿人,预计到2040年将达6.42亿人,而中国糖尿病患者数将位居世界第一。糖尿病视网膜病变(diabetic retinopathy,DR)是糖尿病最常见的眼部并发症,常发生在1型糖尿病患者患病5 a内以及所有的2型糖尿病患者患病20 a后,已成为全球主要致盲原因。如何阻止或减缓DR进展,将成为全球防控可致盲眼病的关键。本文对DR早期的发病机制及目前潜在的治疗策略进行简要综述,以期有助于相关领域的进一步研究和寻找更多有效的DR防治方法。
Abstract:
With the change of people’s lifestyle and diet structure, diabetes has gradually become a global public health issue. The World Health Organization reports that prevalence of diabetes is 422 million worldwide, which is expected to reach 642 million by 2040. China ranks first in the world with the largest population affected by diabetes. Diabetic retinopathy (DR) is one of the most common ocular complications of diabetes mellitus, which often occurs within 5 years after the onset of type 1 diabetes and 20 years after the onset of type 2 diabetes. Thus, DR has become the leading cause of blindness. How to prevent or slow down the progress of DR is essential for prevention of vision threatening eye diseases. In this paper, the current pathogenesis and potential treatment strategies for DR are briefly reviewed in order to inspire the further research direction and seek for the novel therapeutic targets.

参考文献/References:

[1] XU Y,WANG L,HE J,BI Y,LI M,WANG T,et al.Prevalence and control of diabetes in Chinese adults[J].JAMA,2013,310(9):948-959.
[2] World Health Organization.Diabates overview[Z].2020.
[3] CHEUNG N,MITCHELL P,WONG T Y.Diabetic retinopathy[J].Lancet,2010,376(9735):124-136.
[4] FERRARA N,DAVIS-SMYTH T.The biology of vascular endothelial growth factor[J].Endocr Rev,1997,18(1):4-25.
[5] SINGER M A,KERMANY D S,WATERS J,JANSEN M E,TYLER L.Diabetic macular edema: it is more than just VEGF[J].F1000Res,2016,5:F1000Faculty Rev-1019.
[6] DUMITRESCU A G,ISTRATE S L,IANCU R C,GUTA O M,CIULUVICA R,VOINEA L.Retinal changes in diabetic patients without diabetic retinopathy[J].Rom J Ophthalmol,2017,61(4):249-255.
[7] NIESTRATA-ORTIZ M,FICHNA P,STANKIEWICZ W,STOPA M.Enlargement of the foveal avascular zone detected by optical coherence tomography angiography in diabetic children without diabetic retinopathy[J].Graefe Arch Clin Exp Ophthalmol,2019,257(4):689-697.
[8] RUBSAM A,PARIKH S,FORT P E.Role of inflammation in diabetic retinopathy[J].Int J Mol Sci,2018,19(4):942-973.
[9] FENG S,YU H,YU Y,GENG Y,LI D,YANG C,et al.Levels of inflammatory cytokines IL-1beta,IL-6,IL-8,IL-17a,and TNF-alpha in aqueous humour of patients with diabetic retinopathy[J].J Diabetes Res,2018,2018:8546423.
[10] DOGANAY S,EVEREKLIOGLU C,ER H,TURKOZ Y,SEVINC A,MEHMET N,et al.Comparison of serum NO,TNF-alpha,IL-1beta,sIL-2R,IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus[J].Eye (Lond),2002,16(2):163-170.
[11] LOUKOVAARA S,PIIPPO N,KINNUNEN K,HYTTI M,KAARNIRANTA K,KAUPPINEN A.NLRP3 inflammasome activation is associated with proliferative diabetic retinopathy[J].Acta Ophthalmol,2017,95(8):803-808.
[12] BOSS J D,SINGH P K,PANDYA H K,TOSI J,KIM C,TEWARI A,et al.Assessment of neurotrophins and inflammatory mediators in vitreous of patients with diabetic retinopathy[J].Invest Ophthalmol Vis Sci,2017,58(12):5594-5603.
[13] LIU Q,ZHANG F,ZHANG X,CHENG R,MA J X,YI J,et al.Fenofibrate ameliorates diabetic retinopathy by modulating Nrf2 signaling and NLRP3 inflammasome activation[J].Mol Cell Biochem,2018,445(1-2):105-115.
[14] THOUNAOJAM M C,MONTEMARI A,POWELL F L,MALLA P,GUTSAEVA D R,BACHETTONI A,et al.Monosodium urate contributes to retinal inflammation and progression of diabetic retinopathy[J].Diabetes,2019,68(5):1014-1025.
[15] WANG Y,TAO J,JIANG M,YAO Y.Apocynin ameliorates diabetic retinopathy in rats: Involvement of TLR4/NF-kappaB signaling pathway[J].Int Immunopharmacol,2019,73:49-56.
[16] MOHAMMAD H M F,SAMI M M,MAKARY S,TORAIH E A,MOHAMED A O,EL-GHAIESH S H.Neuroprotective effect of levetiracetam in mouse diabetic retinopathy: Effect on glucose transporter-1 and GAP43 expression[J].Life Sci,2019,232:116588.
[17] WU Q,LIU H,ZHOU M.Fangchinoline ameliorates diabetic retinopathy by inhibiting receptor for advanced glycation end-products (RAGE)-nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) pathway in streptozotocin (STZ)-induced diabetic rats[J].Med Sci Monit,2019,25:1113-1121.
[18] JU H B,ZHANG F X,WANG S,SONG J,CUI T,LI L F,et al.Effects of fenofibrate on inflammatory cytokines in diabetic retinopathy patients[J].Medicine (Baltimore),2017,96(31):e7671.
[19] TANGVARASITTICHAI O,TANGVARASITTICHAI S.Oxidative stress,ocular disease and diabetes retinopathy[J].Curr Pharm Des,2018,24(40):4726-4741.
[20] MAHAJAN N,ARORA P,SANDHIR R.Perturbed biochemical pathways and associated oxidative stress lead to vascular dysfunctions in diabetic retinopathy[J].Oxid Med Cell Longev,2019,2019:8458472.
[21] KARBASFOROOSHAN H,KARIMI G.The role of SIRT1 in diabetic retinopathy[J].Biomed Pharmacother,2018,97:190-194.
[22] SANTIAGO A R,BOIA R,AIRES I D,AMBROSIO A F,FERNANDES R.Sweet stress: coping with vascular dysfunction in diabetic retinopathy[J].Front Physiol,2018,9:820.
[23] LIU Q,ZHANG X,CHENG R,MA J X,YI J,LI J.Salutary effect of fenofibrate on type 1 diabetic retinopathy via inhibiting oxidative stress-mediated Wnt/beta-catenin pathway activation[J].Cell Tissue Res,2019,376(2):165-177.
[24] YANG X,HUO F,LIU B,LIU J,CHEN T,LI J,et al.Crocin inhibits oxidative stress and pro-inflammatory response of microglial cells associated with diabetic retinopathy through the activation of pi3k/akt signaling pathway[J].J Mol Neurosci,2017,61(4):581-589.
[25] PENG J J,XIONG S Q,DING L X,PENG J,XIA X B.Diabetic retinopathy: Focus on NADPH oxidase and its potential as therapeutic target[J].Eur J Pharmacol,2019,853:381-387.
[26] KOWLURU R A,KOWLURU A,MISHRA M,KUMAR B.Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy[J].Prog Retin Eye Res,2015,48:40-61.
[27] GARCIA-GIMENEZ J L,IBANEZ-CABELLOS J S,SECO-CERVERA M,PALLARDO F V.Glutathione and cellular redox control in epigenetic regulation[J].Free Radic Biol Med,2014,75(Suppl 1):S3.
[28] KOWLURU R A,MISHRA M.Epigenetic regulation of redox signaling in diabetic retinopathy: Role of Nrf2[J].Free Radic Biol Med,2017,103:155-164.
[29] CANTO A,OLIVAR T,ROMERO F J,MIRANDA M.Nitrosative stress in retinal pathologies: review[J].Antioxidants (Basel),2019,8(11):543-555.
[30] HERNANDEZ-RAMIREZ E,SANCHEZ-CHAVEZ G,ESTRELLA-SALAZAR L A,SALCEDA R.Nitrosative stress in the rat retina at the onset of streptozotocin-induced diabetes[J].Cell Physiol Biochem,2017,42(6):2353-2363.
[31] SHARMA S,SAXENA S,SRIVASTAV K,SHUKLA R K,MISHRA N,MEYER C H,et al.Nitric oxide and oxidative stress is associated with severity of diabetic retinopathy and retinal structural alterations[J].Clin Exp Ophthalmol,2015,43(5):429-436.
[32] CARR B C,EMIGH C E,BENNETT L D,PANSICK A D,BIRCH D G,NGUYEN C.Towards a treatment for diabetic retinopathy:Intravitreal toxicity and preclinical safety evaluation of inducible nitric oxide synthase inhibitors[J].Retina,2017,37(1):22-31.
[33] KOWLURU R A,SANTOS J M,MISHRA M.Epigenetic modifications and diabetic retinopathy[J].Biomed Res Int,2013,2013:635284.
[34] AGARDH E,LUNDSTIG A,PERFILYEV A,VOLKOV P,FREIBURGHAUS T,LINDHOLM E,et al.Genome-wide analysis of DNA methylation in subjects with type 1 diabetes identifies epigenetic modifications associated with proliferative diabetic retinopathy[J].BMC Med,2015,13:182.
[35] KUMARI N,KARMAKAR A,GANESAN S K.Targeting epigenetic modifications as a potential therapeutic option for diabetic retinopathy[J].J Cell Physiol,2020,235(3):1933-1947.
[36] MISHRA M,FLAGA J,KOWLURU R A.Molecular mechanism of transcriptional regulation of matrix metalloproteinase-9 in diabetic retinopathy[J].J Cell Physiol,2016,231(8):1709-1718.
[37] MISHRA M,DURAISAMY A J,KOWLURU R A.Sirt1: a guardian of the development of diabetic retinopathy[J].Diabetes,2018,67(4):745-754.
[38] GONG Q,XIE J,LIU Y,LI Y,SU G.Differentially expressed microRNAs in the development of early diabetic retinopathy[J].J Diabetes Res,2017,2017:4727942.
[39] WU J H,GAO Y,REN A J,ZHAO S H,ZHONG M,PENG Y J,et al.Altered microRNA expression profiles in retinas with diabetic retinopathy[J].Ophthalmic Res,2012,47(4):195-201.
[40] LI E H,HUANG Q Z,LI G C,XIANG Z Y,ZHANG X.Effects of miRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene[J].Biosci Rep,2017,37(2):572-586.
[41] LIU T T,HAO Q,ZHANG Y,LI Z H,CUI Z H,YANG W.Effects of microRNA-133b on retinal vascular endothelial cell proliferation and apoptosis through angiotensinogen-mediated angiotensin Ⅱ- extracellular signal-regulated kinase 1/2 signalling pathway in rats with diabetic retinopathy[J].Acta Ophthalmol,2018,96(5):e626-e635.
[42] ZHANG J,CUI C,XU H.Downregulation of miR-145-5p elevates retinal ganglion cell survival to delay diabetic retinopathy progress by targeting FGF5[J].Biosci Biotechnol Biochem,2019,83(9):1655-1662.
[43] SHAO Y,DONG L J,TAKAHASHI Y,CHEN J,LIU X,CHEN Q,et al.miRNA-451a regulates RPE function through promoting mitochondrial function in proliferative diabetic retinopathy[J].Am J Physiol Endocrinol Metab,2019,316(3):E443-E452.
[44] MISHRA M,KOWLURU R A.Retinal mitochondrial DNA mismatch repair in the development of diabetic retinopathy,and its continued progression after termination of hyperglycemia[J].Invest Ophthalmol Vis Sci,2014,55(10):6960-6967.
[45] MADSEN-BOUTERSE S A,MOHAMMAD G,KANWAR M,KOWLURU R A.Role of mitochondrial DNA damage in the development of diabetic retinopathy,and the metabolic memory phenomenon associated with its progression[J].Antioxid Redox Signal,2010,13(6):797-805.
[46] DEVI T S,SOMAYAJULU M,KOWLURU R A,SINGH L P.TXNIP regulates mitophagy in retinal Müller cells under high-glucose conditions: implications for diabetic retinopathy[J].Cell Death Dis,2017,8(5):e2777.
[47] KOWLURU R A,MISHRA M.Regulation of matrix metalloproteinase in the pathogenesis of diabetic retinopathy[J].Prog Mol Biol Transl Sci,2017,148:67-85.
[48] MISHRA M,KOWLURU R A.DNA Methylation-a potential source of mitochondria DNA base mismatch in the development of diabetic retinopathy[J].Mol Neurobiol,2019,56(1):88-101.
[49] KOWLURU R A,MISHRA M.Therapeutic targets for altering mitochondrial dysfunction associated with diabetic retinopathy[J].Expert Opin Ther Targets,2018,22(3):233-245.
[50] KOWLURU R A.Mitochondrial stability in diabetic retinopathy: lessons learned from epigenetics[J].Diabetes,2019,68(2):241-247.
[51] TEWARI S,ZHONG Q,SANTOS J M,KOWLURU R A.Mitochondria DNA replication and DNA methylation in the metabolic memory associated with continued progression of diabetic retinopathy[J].Invest Ophthalmol Vis Sci,2012,53(8):4881-4888.
[52] KOWLURU R A.Mitochondrial stability in diabetic retinopathy: lessons learned from epigenetics[J].Diabetes,2019,68(2):241-247.
[53] ZHONG Q,KOWLURU R A.Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy[J].Diabetes,2011,60(4):1304-1313.
[54] CARDEN T,SINGH B,MOOGA V,BAJPAI P,SINGH K K.Epigenetic modification of miR-663 controls mitochondria-to-nucleus retrograde signaling and tumor progression[J].J Biol Chem,2017,292(50):20694-20706.
[55] KERN T S.Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy[J].Exp Diabetes Res,2007,2007:95103.
[56] GRAZIOLI S,PUGIN J.Mitochondrial damage-associated molecular patterns:from inflammatory signaling to human diseases[J].Front Immunol,2018,9:832.
[57] SHARMA A,VALLE M L,BEVERIDGE C,LIU Y,SHARMA S.Unraveling the role of genetics in the pathogenesis of diabetic retinopathy[J].Eye (Lond),2019,33(4):534-541.
[58] MIDANI F,BEN AMOR Z,EL AFRIT M A,KALLEL A,FEKI M,SOUALMIA H.The role of genetic variants (rs869109213 and rs2070744) of the eNOS gene and BglII in the alpha2 subunit of the alpha2beta1 integrin gene in diabetic retinopathy in a tunisian population[J].Semin Ophthalmol,2019,34(5):365-374.
[59] MENG W,SHAH K P,POLLACK S,TOPPILA I,HEBERT H L,MCCARTHY M I,et al.A genome-wide association study suggests new evidence for an association of the NADPH Oxidase 4 (NOX4) gene with severe diabetic retinopathy in type 2 diabetes[J].Acta Ophthalmol,2018,96(7):e811-e819.
[60] XIE X J,YANG Y M,JIANG J K,LU Y Q.Association between the vascular endothelial growth factor single nucleotide polymorphisms and diabetic retinopathy risk: A meta-analysis[J].J Diabetes,2017,9(8):738-753.
[61] QIAO Y C,WANG M,PAN Y H,ZHANG X X,TIAN F,CHEN Y L,et al.The relationship between ACE/AGT gene polymorphisms and the risk of diabetic retinopathy in Chinese patients with type 2 diabetes[J].J Renin Angiotensin Aldosterone Syst,2018,19(1):1606490501.
[62] ZAFAR S,SACHDEVA M,FRANKFORT B J,CHANNA R.Retinal neurodegeneration as an early manifestation of diabetic eye disease and potential neuroprotective therapies[J].Curr Diab Rep,2019,19(4):17.
[63] PARK S H,PARK J W,PARK S J,KIM K Y,CHUNG J W,CHUN M H,et al.Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina[J].Diabetologia,2003,46(9):1260-1268.
[64] TONADE D,LIU H,PALCZEWSKI K,KERN T S.Photoreceptor cells produce inflammatory products that contribute to retinal vascular permeability in a mouse model of diabetes[J].Diabetologia,2017,60(10):2111-2120.
[65] TONADE D,LIU H,KERN T S.Photoreceptor cells produce inflammatory mediators that contribute to endothelial cell death in diabetes[J].Invest Ophthalmol Vis Sci,2016,57(10):4264-4271.
[66] MASSER D R,OTALORA L,CLARK N W,KINTER M T,ELLIOTT M H,FREEMAN W M.Functional changes in the neural retina occur in the absence of mitochondrial dysfunction in a rodent model of diabetic retinopathy[J].J Neurochem,2017,143(5):595-608.
[67] SOHN E H,van DIJK H W,JIAO C,KOK P H,JEONG W,DEMIRKAYA N,et al.Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus[J].Proc Natl Acad Sci U S A,2016,113(19):E2655-E2664.
[68] ASAHARA T,MUROHARA T,SULLIVAN A,SILVER M,VAN DER ZEE R,LI T,et al.Isolation of putative progenitor endothelial cells for angiogenesis[J].Science,1997,275(5302):964-967.
[69] INGRAM D A,MEAD L E,TANAKA H,MEADE V,FENOGLIO A,MORTELL K,et al.Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood[J].Blood,2004,104(9):2752-2760.
[70] SHAO Y,LI X,WOOD J W,MA J X.Mitochondrial dysfunctions,endothelial progenitor cells and diabetic retinopathy[J].J Diabetes Complications,2018,32(10):966-973.
[71] KIM K A,SHIN Y J,AKRAM M,KIM E S,CHOI K W,SUH H,et al.High glucose condition induces autophagy in endothelial progenitor cells contributing to angiogenic impairment[J].Biol Pharm Bull,2014,37(7):1248-1252.
[72] LIU Y,WEI J,CHANG M,LIU Z,LI D,HU S,et al.Proteomic analysis of endothelial progenitor cells exposed to oxidative stress[J].Int J Mol Med,2013,32(3):607-614.
[73] XUE J,DU G,SHI J,LI Y,YASUTAKE M,LIU L,et al.Combined treatment with erythropoietin and granulocyte colony-stimulating factor enhances neovascularization and improves cardiac function after myocardial infarction[J].Chin Med J (Engl),2014,127(9):1677-1683.
[74] YAN X,DAI X,HE L,LING X,SHAO M,ZHANG C,et al.A Novel CXCR4 antagonist enhances angiogenesis via modifying the ischaemic tissue environment[J].J Cell Mol Med,2017,21(10):2298-2307.
[75] WILS J,FAVRE J,BELLIEN J.Modulating putative endothelial progenitor cells for the treatment of endothelial dysfunction and cardiovascular complications in diabetes[J].Pharmacol Ther,2017,170:98-115.
[76] ROSA M D,DISTEFANO G,GAGLIANO C,RUSCIANO D,MALAGUARNERA L.Autophagy in diabetic retinopathy[J].Curr Neuropharmacol,2016,14(8):810-825.
[77] DEHDASHTIAN E,MEHRZADI S,YOUSEFI B,HOSSEINZADEH A,REITER R J,SAFA M,et al.Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy,inflammation and oxidative stress[J].Life Sci,2018,193:20-33.
[78] PIANO I,NOVELLI E,DELLA SANTINA L,STRETTOI E,CERVETTO L,GARGINI C.Involvement of autophagic pathway in the progression of retinal degeneration in a mouse model of diabetes[J].Front Cell Neurosci,2016,10:42.
[79] SHI H,ZHANG Z,WANG X,LI R,HOU W,BI W,et al.Inhibition of autophagy induces IL-1beta release from ARPE-19 cells via ROS mediated NLRP3 inflammasome activation under high glucose stress[J].Biochem Biophys Res Commun,2015,463(4):1071-1076.
[80] LOPES DE FARIA J M,DUARTE D A,MONTEMURRO C,PAPADIMITRIOU A,CONSONNI S R,LOPES DE FARIA J B.Defective autophagy in diabetic retinopathy[J].Invest Ophthalmol Vis Sci,2016,57(10):4356-4366.
[81] CAI X,LI J,WANG M,SHE M,TANG Y,LI J,et al.GLP-1 treatment improves diabetic retinopathy by alleviating autophagy through GLP-1R-ERK1/2-HDAC6 signaling pathway[J].Int J Med Sci,2017,14(12):1203-1212.
[82] STORCH K F,PAZ C,SIGNOROVITCH J,RAVIOLA E,PAWLYK B,LI T,et al.Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information[J].Cell,2007,130(4):730-741.
[83] GALE J E,COX H I,QIAN J,BLOCK G D,COLWELL C S,MATVEYENKO A V.Disruption of circadian rhythms accelerates development of diabetes through pancreatic beta-cell loss and dysfunction[J].J Biol Rhythms,2011,26(5):423-433.
[84] TAHERI S.The link between short sleep duration and obesity: we should recommend more sleep to prevent obesity[J].Arch Dis Child,2006,91(11):881-884.
[85] GUBIN D G,NELAEVA A A,UZHAKOVA A E,HASANOVA Y V,CORNELISSEN G,WEINERT D.Disrupted circadian rhythms of body temperature,heart rate and fasting blood glucose in prediabetes and type 2 diabetes mellitus[J].Chronobiol Int,2017,34(8):1136-1148.
[86] JEE D,KEUM N,KANG S,ARROYO J G.Sleep and diabetic retinopathy[J].Acta Ophthalmol,2017,95(1):41-47.
[87] DI R,LUO Q,MATHEW D,BHATWADEKAR A D.Diabetes alters diurnal rhythm of electroretinogram in db/db mice[J].Yale J Biol Med,2019,92(2):155-167.
[88] DUMPALA S,ZELE A J,FEIGL B.Outer retinal structure and function deficits contribute to circadian disruption in patients with type 2 diabetes[J].Invest Ophthalmol Vis Sci,2019,60(6):1870-1878.

相似文献/References:

[1]杜玮 刘子扬 周艳艳 雒雷鸣.糖尿病视网膜病变与血清胆红素水平的关系[J].眼科新进展,2012,32(5):000.
[2]范松涛 卢建民.阿司匹林与糖尿病患者玻璃体出血以及玻璃体切割术疗效的相关性研究[J].眼科新进展,2012,32(11):000.
[3]李艳 李筱荣 袁佳琴 潘斌.糖尿病大鼠视网膜中VEGF、PEDF的表达与血-视网膜屏障损伤[J].眼科新进展,2013,33(1):000.
[4]李朝晖 崔治华 胡晓英 孟丽珠 张敬维.糖尿病视网膜病变激光面积与疗效的分析[J].眼科新进展,2013,33(2):000.
[5]冯冬梅 朱鸿 施彩虹.CXC趋化因子及其受体在糖尿病视网膜病变中的作用[J].眼科新进展,2013,33(6):000.
[6]牛淑玲.糖尿病视网膜病变患者HbAlc、FPG与血小板参数的变化及危险因素分析[J].眼科新进展,2013,33(7):000.
[7]毕春潮 王睿 王建洲 雷春灵 董晓娟 王小莉 薛晓辉.Ad-PEDF对糖尿病视网膜病变大鼠视网膜新生血管的抑制作用[J].眼科新进展,2013,33(8):000.
[8]杨萍 孙书明 李晓鹏.辛伐他汀对糖尿病视网膜病变和炎症因子的影响[J].眼科新进展,2013,33(8):000.
[9]罗文婷 孙大卫.血管黏附蛋白-1在眼科疾病中的研究进展[J].眼科新进展,2013,33(8):000.
[10]李小璐 马雅玲.糖尿病视网膜病变大鼠视网膜VEGF和PEDF的动态表达[J].眼科新进展,2013,33(9):000.
[11]兰文 陆燕 王春红 胡钦瑞 黄振平.糖尿病视网膜病变炎症的研究新进展[J].眼科新进展,2013,33(2):000.
[12]刘安琪,左中夫,吴传玲,等.Netrin-1对糖尿病视网膜病变大鼠的保护作用[J].眼科新进展,2020,40(1):011.[doi:10.13389/j.cnki.rao.2020.0003]
 LIU Anqi,ZUO Zhongfu,WU Chuanling,et al.Protective effect of Netrin-1 on rats with diabetic retinopathy[J].Recent Advances in Ophthalmology,2020,40(7):011.[doi:10.13389/j.cnki.rao.2020.0003]
[13]唐磊,徐国彤,张敬法.褪黑素治疗糖尿病视网膜病变的研究进展[J].眼科新进展,2021,41(7):684.[doi:10.13389/j.cnki.rao.2021.0142]
 TANG Lei,XU Guotong,ZHANG Jingfa.Progress of melatonin in the treatment of diabetic retinopathy[J].Recent Advances in Ophthalmology,2021,41(7):684.[doi:10.13389/j.cnki.rao.2021.0142]
[14]孔慧,崔彦.CD40-ATP-P2X7/NLRP3炎症信号通路在糖尿病视网膜病变中的作用研究进展[J].眼科新进展,2021,41(9):879.[doi:10.13389/j.cnki.rao.2021.0184]
 KONG Hui,CUI Yan.Research progress of the CD40-ATP-P2X7/NLRP3 inflammatory pathway in diabetic retinopathy[J].Recent Advances in Ophthalmology,2021,41(7):879.[doi:10.13389/j.cnki.rao.2021.0184]
[15]司长峰,卜荔,徐楠,等.柴胡皂苷D对糖尿病视网膜病变大鼠的治疗作用[J].眼科新进展,2021,41(10):925.[doi:10.13389/j.cnki.rao.2021.0194]
 SI Changfeng,BU Li,XU Nan,et al.Therapeutical effect of Saikosaponin D on diabetic retinopathy of rats[J].Recent Advances in Ophthalmology,2021,41(7):925.[doi:10.13389/j.cnki.rao.2021.0194]
[16]孔慧,崔彦.糖尿病视网膜病变中视网膜内皮细胞功能障碍的研究进展[J].眼科新进展,2022,42(9):753.[doi:10.13389/j.cnki.rao.2022.0155]
 KONG Hui,CUI Yan.Research progress on retinal endothelial cell dysfunction in diabetic retinopathy[J].Recent Advances in Ophthalmology,2022,42(7):753.[doi:10.13389/j.cnki.rao.2022.0155]
[17]陈洪良,施健,娄雪莹,等.中性粒细胞胞外陷阱在糖尿病视网膜病变中作用的研究进展[J].眼科新进展,2023,43(9):747.[doi:10.13389/j.cnki.rao.2023.0150]
 CHEN Hongliang,SHI Jian,LOU Xueying,et al.Research progress on the effect of neutrophil extracellular traps in diabetic retinopathy[J].Recent Advances in Ophthalmology,2023,43(7):747.[doi:10.13389/j.cnki.rao.2023.0150]
[18]张敬法.炎症在糖尿病视网膜病变中的作用:发病机制及治疗策略[J].眼科新进展,2024,44(1):001.[doi:10.13389/j.cnki.rao.2024.0001]
 ZHANG Jingfa.Role of inflammation in diabetic retinopathy: pathogenesis and treatment strategies[J].Recent Advances in Ophthalmology,2024,44(7):001.[doi:10.13389/j.cnki.rao.2024.0001]
[19]刘磊,刘珊珊,胡菲菲,等.吴茱萸碱调节cAMP/PKA信号通路在糖尿病大鼠视网膜损伤中的作用[J].眼科新进展,2024,44(2):094.[doi:10.13389/j.cnki.rao.2024.0019]
 LIU Lei,LIU Shanshan,HU Feifei,et al.Impact of evodiamine on retinal injury in diabetic rats by regulating cyclic adenosine monophosphate/protein kinase A signaling pathway[J].Recent Advances in Ophthalmology,2024,44(7):094.[doi:10.13389/j.cnki.rao.2024.0019]

备注/Memo

备注/Memo:
国家自然科学基金(编号:81960177、81740158);江西省自然科学基金(编号:20192BAB205049)
更新日期/Last Update: 2020-07-05