[1]尹伊,徐莹,赵玉泽,等.基于JAK2/STAT3通路分析姜黄素对视网膜缺血-再灌注损伤大鼠视网膜小胶质细胞极化的影响[J].眼科新进展,2023,43(6):439-443.[doi:10.13389/j.cnki.rao.2023.0088]
 YIN Yi,XU Ying,ZHAO Yuze,et al.Analysis of the effect of Curcumin on retinal microglia polarization of rats with retinal ischemia reperfusion injury via janus kinase 2/signal transducer and activator of transcription 3 pathway[J].Recent Advances in Ophthalmology,2023,43(6):439-443.[doi:10.13389/j.cnki.rao.2023.0088]
点击复制

基于JAK2/STAT3通路分析姜黄素对视网膜缺血-再灌注损伤大鼠视网膜小胶质细胞极化的影响/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
43卷
期数:
2023年6期
页码:
439-443
栏目:
实验研究
出版日期:
2023-06-05

文章信息/Info

Title:
Analysis of the effect of Curcumin on retinal microglia polarization of rats with retinal ischemia reperfusion injury via janus kinase 2/signal transducer and activator of transcription 3 pathway
作者:
尹伊徐莹赵玉泽王晨旭肖培伦李晓双王晓莉赵岩松
261041 山东省潍坊市,潍坊医学院附属医院眼科(尹伊,徐莹,王晨旭,赵岩松);261053 山东省潍坊市,潍坊医学院(赵玉泽,肖培伦,李晓双,王晓莉)
Author(s):
YIN Yi1XU Ying1ZHAO Yuze2WANG Chenxu1XIAO Peilun2LI Xiaoshuang2WANG Xiaoli2ZHAO Yansong1
1.Department of Ophthalmology,the Affiliated Hospital of Weifang Medical University,Weifang 261041,Shandong Province,China
2.Weifang Medical University,Weifang 261053,Shandong Province,China
关键词:
视网膜缺血-再灌注损伤小胶质细胞极化姜黄素JAK2/STAT3通路
Keywords:
retina ischemia reperfusion injury microglia polarization Curcumin janus kinase 2/signal transducer and activator of transcription 3 pathway
分类号:
R774.1
DOI:
10.13389/j.cnki.rao.2023.0088
文献标志码:
A
摘要:
目的 探讨姜黄素(CUR)对视网膜缺血-再灌注损伤(RIRI)大鼠视网膜小胶质细胞极化的影响,并通过JAK2/STAT3通路探讨其机制,以期为CUR的临床应用提供理论依据。
方法 健康雄性成年Sprague Dawley大鼠36只,随机分为假手术(Sham)组、RIRI组与CUR组,每组各12只。RIRI组和CUR组大鼠右眼采用高眼压法建立RIRI模型,Sham组仅将针头刺入大鼠右眼前房,不升高眼压。CUR组大鼠于建模前30 min腹腔注射CUR(100 mg·kg-1),RIRI组和Sham组大鼠腹腔注射等剂量生理盐水。造模后24 h,采用HE染色及免疫组织化学染色法观察各组大鼠视网膜形态及视网膜神经节细胞(RGC)数变化,Iba-1/CD16、Iba-1/Arg1免疫荧光双标法检测CUR对RIRI大鼠视网膜小胶质细胞极化的影响,免疫组织化学结合Western blot检测观察CUR对RIRI大鼠RGC及JAK2/STAT3通路信号分子表达的影响。
结果 HE染色及免疫组织化学染色结果显示,Sham组大鼠视网膜细胞排列整齐,神经节细胞层见大量Brn-3a+细胞(即RGC);与Sham组相比,造模后24 h,RIRI组大鼠内层视网膜厚度显著增加、RGC数显著减少,而CUR组大鼠内层视网膜厚度较RIRI组显著变薄,RGC数显著多于RIRI组(均为P<0.05)。免疫荧光双标染色结果显示,RIRI组大鼠视网膜Iba-1+CD16+细胞(M1型小胶质细胞)数较Sham组显著增加,而CUR组大鼠视网膜Iba-1+CD16+细胞数显著少于RIRI组,但仍多于Sham组(均为P<0.05);RIRI组大鼠视网膜Iba-1+Arg1+细胞(M2型胶质细胞)数较Sham组增加,而CUR组大鼠视网膜Iba-1+Arg1+细胞数显著高于RIRI组(均为P<0.05)。免疫组织化学染色结果显示,与Sham组相比,RIRI组大鼠视网膜p-JAK2+、p-STAT3+细胞数均较Sham组增多,而CUR组大鼠视网膜p-JAK2+、p-STAT3+细胞数均显著少于RIRI组(均为P<0.05)。Western blot检测结果显示,Sham组大鼠视网膜p-JAK2和p-STAT3蛋白表达水平较低;造模后24 h,RIRI组大鼠视网膜p-JAK2和p-STAT3 蛋白表达显著升高,而CUR组大鼠视网膜p-JAK2和p-STAT3蛋白表达量均较RIRI组显著下降,但仍高于Sham组(均为P<0.05)。
结论 CUR可调控小胶质细胞由M1型向M2型极化,从而减轻大鼠RIRI,具有神经保护作用,其机制可能与JAK2/STAT3信号通路激活有关。
Abstract:
Objective To explore the effect of Curcumin (CUR) on the retinal microglia polarization in retinal ischemia reperfusion injury (RIRI) rats and analyze its mechanism via the janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway, providing the theoretical basis for the clinical application of CUR.
Methods Totally 36 healthy male adult Sprague Dawley rats were randomly divided into the Sham group, RIRI group and CUR group, with 12 in each group. The RIRI models were established in the right eye of rats in the RIRI group and CUR group by the high intraocular pressure method. In the Sham group, the needle was only inserted into the anterior chamber of the right eye without increasing intraocular pressure. At 30 min before the modeling, rats in the CUR group were intraperitoneally injected with CUR (100 mg·kg-1), while rats in the RIRI group and Sham group were intraperitoneally injected with an equal dose of physiological saline. At 24 h after modeling, the retinal morphology and the number of retinal ganglion cells (RGC) of rats in each group were observed by hematoxylin-eosin (HE) staining and immunohistochemical staining. Iba-1/CD16 and Iba-1/Arg1 immunofluorescence staining was used to detect the effect of CUR on the polarization of retinal microglia in RIRI rats. Immunohistochemical staining combined with Western blot was used to observe the effect of CUR on the expression of RGC and the molecular expression of JAK2/STAT3 signaling pathway in RIRI rats.
Results The HE staining and immunohistochemical staining showed that the retinal cells of rats in the Sham group were neatly arranged, and a large number of Brn-3a+ cells (that is, RGC) were found in the ganglion cell layer. Compared with the Sham group, the thickness of the inner retinal layer increased significantly, and the number of RGC decreased significantly in the RIRI group 24 h after mode-ling; the thickness of the inner retinal layer in the CUR group was significantly thinner than that in the RIRI group, and the number of RGC was significantly higher than that in the RIRI group (all P<0.05). The double immunofluorescence labeling staining showed that the number of Iba-1+CD16+ cells (M1 microglia) in the RIRI group was significantly higher than that in the Sham group, while the number of retinal Iba-1+CD16+ cells in the CUR group was significantly less than that in the RIRI group, but still more than that in the Sham group (all P<0.05). The number of Iba-1+Arg1+ cells (M2 microglia) in the RIRI group significantly increased compared with that in the Sham group, while the number of Iba-1+Arg1+ cells in the CUR group was significantly higher than that in the RIRI group (both P<0.05). Immunohistochemical staining results showed that the numbers of porcine-janus kinase 2 (p-JAK2)+ and porcine-signal transducer and activator of transcription 3 (p-STAT3)+ cells in the RIRI group were higher than those in the Sham group, while the numbers of p-JAK2+ and p-STAT3+ cells in the CUR group were significantly lower than those in the RIRI group (all P<0.05). The Western blot detection results showed that the protein expression levels of p-JAK2 and p-STAT3 in the Sham group were lower; at 24 h after modeling, the protein expression levels of p-JAK2 and p-STAT3 increased significantly in the RIRI group, while those in the CUR group were significantly lower than the RIRI group, but still higher than the Sham group (all P<0.05).
Conclusion CUR can regulate the microglia polarization from M1 to M2, so as to alleviate RIRI of rats and show neuroprotective effects. Its mechanism may be related to the activation of the JAK2/STAT3 signaling pathway.

参考文献/References:

[1] HUI Q Y,KARLSTETTER M,XU Z H,YANG J,ZHOU L L,EILKEN H M,et al.Inhibition of the Keap1-Nrf2 protein-protein interaction protects retinal cells and ameliorates retinal ischemia-reperfusion injury[J].Free Radic Biol Med,2020,146:181-188.
[2] LI L,GAN H Y,JIN H Q,FANG Y,YANG Y,ZHANG J P,et al.Astragaloside IV promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats[J].Int Immunopharmacol,2021,92:107335.
[3] WU Y Q,XU J,XU J,ZHENG W,CHEN Q Y,JIAO D M.Study on the mechanism of JAK2/STAT3 signaling pathway-mediated inflammatory reaction after cerebral ischemia[J].Mol Med Rep,2018,17(4):5007-5012.
[4] WANG Y,LUO J,LI S Y.Nano-Curcumin simultaneously protects the blood-brain barrier and reduces M1 microglial activation during cerebral ischemia-reperfusion injury[J].ACS Appl Mater Interfaces,2019,11(4):3763-3770.
[5] LIU Z J,RAN Y Y,HUANG S,WEN S H,ZHANG W X,LIU X R,et al.Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization[J].Front Aging Neurosci,2017,9:233.
[6] LIU J X,ZHANG N,ZHANG M B,YIN H W,ZHANG X N,WANG X,et al.N-acetylserotonin alleviated the expression of interleukin-1β in retinal ischemia-reperfusion rats via the TLR4/NF-κB/NLRP3 pathway[J].Exp Eye Res,2021,208:108595.
[7] WANG S,YU A H,HAN M Y,CHEN X M,LI Z,KE M,et al.Pathological changes and expression of JAK-STAT signaling pathway hallmark proteins in rat retinas at different time points after retinal ischemia reperfusion injury[J].Pathol Oncol Res,2022,28:1610385.
[8] JIANG N,LI Z D,LI Z,ZHANG Y Y,YU Z Y,WAN P X,et al.Laquinimod exerts anti-inflammatory and antiapoptotic effects in retinal ischemia/reperfusion injury[J].Int Immunopharmacol,2020,88:106989.
[9] GADANI S P,CRONK J C,NORRIS G T,KIPNIS J.IL-4 in the brain:a cytokine to remember[J].J Immunol,2012,189(9):4213-4219.
[10] ANAND P,KUNNUMAKKARA A B,NEWMAN R A,AGGARWAL B B.Bioavailability of Curcumin:problems and promises[J].Mol Pharm,2007,4(6):807-818.
[11] YU S,ZHENG W,XIN N,CHI Z H,WANG N Q,NIE Y X,et al.Curcumin prevents dopaminergic neuronal death through inhibition of the c-Jun N-terminal kinase pathway[J].Rejuvenation Res,2010,13(1):55-64.
[12] SHISHODIA S,SETHI G,AGGARWAL B B.Curcumin:getting back to the roots[J].Ann N Y Acad Sci,2005,1056:206-217.
[13] WANG Y H,YIN Z Y,GAO L X,SUN D Y,HU X S,XUE L Y,et al.Curcumin delays retinal degeneration by regulating microglia activation in the retina of rd1 mice[J].Cell Physiol Biochem,2017,44(2):479-493.
[14] RAWLINGS J S,ROSLER K M,HARRISON D A.The JAK/STAT signaling pathway[J].J Cell Sci,2004,117(Pt 8):1281-1283.
[15] 谢惠芳,徐如祥,魏继鹏,姜晓丹,刘振华.大鼠脑缺血再灌注损伤后磷酸化JAK2、STAT3蛋白表达及细胞凋亡[J].南方医科大学学报,2007,27(2):208-211,218.
XIE H F,XU R X,WEI J P,JIANG X D,LIU Z H.P-JAK2 and P-STAT3 protein expression and cell apoptosis following focal cerebral ischemia-reperfusion injury in rats[J].J South Med Univ,2007,27(2):208-211,218.
[16] BABON J J,LUCET I S,MURPHY J M,NICOLA N A,VARGHESE L N.The molecular regulation of Janus kinase (JAK) activation[J].Biochem J,2014,462(1):1-13.
[17] DUAN W X,YANG Y,YAN J J,YU S Q,LIU J C,ZHOU J J,et al.The effects of Curcumin post-treatment against myocar-dial ischemia and reperfusion by activation of the JAK2/STAT3 signaling pathway[J].Basic Res Cardiol,2012,107(3):263.
[18] ZHOU Q P,LIN L F,LI H Y,WANG H F,JIANG S Q,HUANG P X,et al.Melatonin reduces neuroinflammation and improves axonal hypomyelination by modulating M1/M2 microglia polarization via JAK2-STAT3-telomerase pathway in postnatal rats exposed to lipopolysaccharide[J].Mol Neurobiol,2021,58(12):6552-6576.
[19] WEISSENBERGER J,PRIESTER M,BERNREUTHER C,RAKEL S,GLATZEL M,SEIFERT V,et al.Dietary Curcumin attenuates glioma growth in a syngeneic mouse model by inhibition of the JAK1,2/STAT3 signaling pathway[J].Clin Cancer Res,2010,16(23):5781-5795.
[20] SAYDMOHAMMED M,JOSEPH D,SYED V.Curcumin suppresses constitutive activation of STAT-3 by up-regulating protein inhibitor of activated STAT-3 (PIAS-3) in ovarian and endometrial cancer cells[J].J Cell Biochem,2010,110(2):447-456.
[21] ROCHA-FERREIRA E,SISA C,BRIGHT S,FAUTZ T,HARRIS M,Riquelme I C,et al.Curcumin:novel treatment in neonatal hypoxic-ischemic brain injury[J].Front Physiol,2019,10:1351.
[22] WANG L L,LI C Z,GUO H,KERN T S,HUANG K,ZHENG L.Curcumin inhibits neuronal and vascular degeneration in retina after ischemia and reperfusion injury[J].PLoS One,2011,6(8):e23194.

相似文献/References:

[1]范姗姗 曹永亮 王晓莉 赵岩松 李娜娜 梁冰.MSC 移植对视网膜缺血-再灌注损伤后神经节细胞中HIF-1α及 Caspase-3表达的影响[J].眼科新进展,2012,32(7):000.
[2]梁冰 曹永亮 郭爱华 李娜娜 韩延燕 曲群.Edaravone对视网膜缺血-再灌注损伤大鼠Bcl-2和Bax表达的影响[J].眼科新进展,2013,33(4):000.
[3]韩延燕 曹永亮 梁冰 曲群 李娜娜. BMSC移植对视网膜缺血-再灌注损伤凋亡相关基因c-fos/c-jun表达的影响[J].眼科新进展,2014,34(3):209.
[4]赵昆,黄敏丽,王淼,等.雷帕霉素对视网膜缺血-再灌注损伤的保护作用[J].眼科新进展,2014,34(5):409.[doi:10.13389/j.cnki.rao.2014.0113]
 ZHAO Kun,HUANG Min-Li,WANG Miao,et al.Protective effects of raamycin on retinal is-chemia-reperfusion injury of rats[J].Recent Advances in Ophthalmology,2014,34(6):409.[doi:10.13389/j.cnki.rao.2014.0113]
[5]孔蕾,胡敏,华启云,等.实验性视网膜缺血-再灌注损伤中坏死性凋亡相关因子的表达变化[J].眼科新进展,2016,36(12):1109.[doi:10.13389/j.cnki.rao.2016.0296]
 KONG Lei,HU Min,HUA Qi-Yun,et al.Expression changes of necroptosis related factors in experimental retinal ischemia reperfusion injury[J].Recent Advances in Ophthalmology,2016,36(6):1109.[doi:10.13389/j.cnki.rao.2016.0296]
[6]黄逸慧,黄敏丽.Caspase-7与视网膜缺血-再灌注损伤[J].眼科新进展,2016,36(12):1188.[doi:10.13389/j.cnki.rao.2016.0316]
 HUANG Yi-Hui,HUANG Min-Li.Caspase-7 and retinal ischemia-reperfusion injury[J].Recent Advances in Ophthalmology,2016,36(6):1188.[doi:10.13389/j.cnki.rao.2016.0316]
[7]常鲁,许丽,韩新红,等.色素上皮衍生因子基因修饰的人脐带间充质干细胞对大鼠视网膜缺血-再灌注损伤的保护作用[J].眼科新进展,2018,38(4):324.[doi:10.13389/j.cnki.rao.2018.0076]
 CHANG Lu,XU Li,HAN Xin-Hong,et al.Protective effects of PEDF gene modified human umbilical cord mesenchymal stem cells in rat with retinal ischemia-reperfusion injury[J].Recent Advances in Ophthalmology,2018,38(6):324.[doi:10.13389/j.cnki.rao.2018.0076]
[8]李娟娟,陈晨,张利伟,等.视网膜缺血-再灌注损伤中小胶质细胞对微循环的破坏作用[J].眼科新进展,2019,39(7):625.[doi:10.13389/j.cnki.rao.2019.0144]
 LI Juan-Juan,CHEN Chen,ZHANG Li-Wei,et al.Retinal microglia activation and its effects on microcirculation in experimental retinal ischemia reperfusion injury[J].Recent Advances in Ophthalmology,2019,39(6):625.[doi:10.13389/j.cnki.rao.2019.0144]
[9]常花蕾,朱娟,于敬妮,等.藏红花素对大鼠视网膜缺血-再灌注损伤的保护作用[J].眼科新进展,2019,39(7):630.[doi:10.13389/j.cnki.rao.2019.0145]
 CHANG Hua-Lei,ZHU Juan,YU Jing-Ni,et al.Protective effect of crocin against retinal ischemia-reperfusion injury in rats[J].Recent Advances in Ophthalmology,2019,39(6):630.[doi:10.13389/j.cnki.rao.2019.0145]
[10]刘建晓,殷慧文,陈伟,等.不同剂量N-乙酰-5-羟色胺(NAS)对视网膜缺血-再灌注损伤大鼠视网膜细胞凋亡的影响[J].眼科新进展,2019,39(8):728.[doi:10.13389/j.cnki.rao.2019.0166]
 LIU Jian-Xiao,YIN Hui-Wen,CHEN Wei,et al.Effects of different doses of NAS on retinal apoptosis in rats with retinal ischemia-reperfusion injury[J].Recent Advances in Ophthalmology,2019,39(6):728.[doi:10.13389/j.cnki.rao.2019.0166]

备注/Memo

备注/Memo:
山东省自然科学基金(编号:ZR2021MH351,ZR2020MH074);国家自然科学基金(编号:82071888);山东省中医药科技发展计划项目(编号:2019-0421);潍坊市科学技术发展计划项目(编号:2021GX057,2021YX039)
更新日期/Last Update: 2023-06-05