[1]薛超,向尧齐,王雁,等.人眼角膜基质生物力学特性研究[J].眼科新进展,2019,39(11):1009-1013.[doi:10.13389/j.cnki.rao.2019.0231]
 XUE Chao,XIANG Yao-Qi,WANG Yan,et al.Biomechanical properties of normal human corneal stroma[J].Recent Advances in Ophthalmology,2019,39(11):1009-1013.[doi:10.13389/j.cnki.rao.2019.0231]
点击复制

人眼角膜基质生物力学特性研究/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
39卷
期数:
2019年11期
页码:
1009-1013
栏目:
实验研究
出版日期:
2019-11-05

文章信息/Info

Title:
Biomechanical properties of normal human corneal stroma
作者:
薛超向尧齐王雁沈岷吴迪
300020 天津市,天津市眼科医院,天津市眼科学与视觉科学重点实验室,天津市眼科研究所(薛超,王雁,吴迪);300050 天津市,天津大学机械工程学院(向尧齐,沈岷)
Author(s):
XUE ChaoXIANG Yao-QiWANG YanSHEN MinWU Di
Tianjin Eye Hospital,Tianjin Key Laboratory of Ophthalmology and Visual Science,Tianjin Eye Institute (XUE Chao,WANG Yan,WU Di),Tianjin 300020,China;School of Mechanical Engineering,Tianjin University (XIANG Yao-Qi,SHEN Min),Tianjin 300050,China
关键词:
角膜基质生物力学特性应力-应变实验应力松弛实验蠕变实验
Keywords:
corneal stromabiomechanical propertystress-strain teststress relaxation testcreep test
分类号:
R778.1
DOI:
10.13389/j.cnki.rao.2019.0231
文献标志码:
A
摘要:
目的 了解正常人眼角膜基质的生物力学特性,初步获得相对正常角膜组织生物力学相关参数。方法 使用全飞秒激光小切口角膜基质透镜取出术术中获取的角膜基质透镜,根据实验需要裁切成角膜基质组织试件,在常温和水浴条件下,分别进行应力-应变实验、蠕变实验和应力松弛实验,初步得到新鲜角膜基质组织的应力-应变曲线、蠕变曲线和应力松弛曲线,以评估人眼角膜基质的生物力学特性。结果 低应变区切线模量为(1.32±0.48)MPa,高应变区切线模量为(51.26±8.23)MPa,断裂点应变为(0.52±0.06)mm·mm-1,断裂点应力为(13.00±2.51)MPa。在应力为0.01 MPa、0.02 MPa、0.03 MPa时,角膜基质试件弹性模量分别为(0.89±0.25)MPa、(1.28±0.21)MPa、(1.69±0.18)MPa。在1.00 N恒定载荷下,角膜基质试件形变随时间延长而增大,早期变化较快,后期逐渐变缓,600 s时蠕变率为(4.57±1.67)%。维持角膜基质试件长度至初始长度的1.5倍,应力随着时间的延长逐渐衰减,早期衰减较快,随着时间的延长衰减趋于平缓,1 h时松弛率为(28.49±0.04)%。结论 初步得出正常角膜基质组织的生物力学参数,可为进一步深入研究角膜的生物力学特性提供一定的理论参考。
Abstract:
Objective To investigate biomechanical properties of normal human corneal stroma and obtain its biomechanical parameters preliminarily.Methods Corneal lenticule extracted from small incision lenticule extraction surgery were cut into specimens according to requirement.The stress-strain test,creep test and stress relaxation test were performed at room temperature in water bath,and then the stress-strain curve,creep curve and stress relaxation curve of relative fresh corneal stroma were obtained to evaluate the biomechanical properties of normal human corneal stroma.Results Low strain tangent modulus(LSTM)was (1.32±0.48)MPa,high strain tangent modulus (HSTM) was (51.26±8.23)MPa,strain and stress in fracture point (εDD) was (0.52±0.06)mm·mm-1,(13.00±2.51)MPa,respectively.The elastic modulus of corneal stroma was (0.89±0.25)MPa,(1.28±0.21)MPa,(1.69±0.18)MPa,respectively at the stress of 0.01 MPa,0.02 MPa,0.03 MPa.At 1.00 N constant load,the deformation of the specimen enhanced with time,the change in early time was faster and gradually slowed down in the later period.The creep rate was (4.57±1.67)% at 600 s.Keeping the length of the corneal specimen 1.5 times as long as the initial length,the stress gradually attenuated with the extension of time,the early attenuation rate was relatively fast at the beginning and slowed down with time,and the relaxation rate was (28.49±0.04)% at 1 h.Conclusion The biomechanical characteristics of normal human corneal stroma are revealed in this study,which lay the foundation for the further research on human cornea.

参考文献/References:

[1] SEKUNDO W,KUNERT K S,BLUM M.Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism:results of a 6 month prospective study[J].Br J Ophthalmol,2011,95(3):335-339.
[2] WANG Y,MA J,ZHANG J,DOU R,ZHANG H,LI L,et al.Incidence and management of intraoperative complications during small-incision lenticule extraction in 3004 cases[J].J Cataract Refract Surg,2017,43(6):796-802.
[3] WU D,WANG Y,ZHANG L,WEI S,TANG X.Corneal biomechanical effects:small-incision lenticule extraction versus femtosecond laser-assisted laser in situ keratomileusis[J].J Cataract Refract Surg,2014,40(6):954-962.
[4] DAVIS L A,STEWART S E,CARSTEN C G,SNYDER B A,SUTTON M A,LESSNER S M.Characterization of fracture behavior of human atherosclerotic fibrous caps using a miniature single edge notched tensile test[J].Acta Biomater,2016,43:101-111.
[5] PINERO D P,ALCON N.Corneal biomechanics:a review[J].Clin Exp Optom,2015,98(2):107-116.
[6] ETHIER C R,JOHNSON M,RUBERTI J.Ocular biomechanics and biotransport[J].Annu Rev Biomed Eng,2004,6:249-273.
[7] ROBERTS C J.Concepts and misconceptions in corneal biomechanics[J].J Cataract Refract Surg,2014,40(6):862-869.
[8] HUSEYNOVA T,WARING G O T,ROBERTS C,KRUEGER R R,TOMITA M.Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes[J].Am J Ophthalmol,2014,157(4):885-893.
[9] MA J,WANG Y,WEI P,JHANJI V.Biomechanics and structure of the cornea:implications and association with corneal disorders[J].Surv Ophthalmol,2018,63(6):851-861.
[10] BAO F,GERAGHTY B,WANG Q,ELSHEIKH A.Consideration of corneal biomechanics in the diagnosis and management of keratoconus:Is it important?[J].Eye Vis (Lond),2016,3:18.
[11] ROBERTS C.Biomechanical customization:the next generation of laser refractive surgery[J].J Cataract Refract Surg,2005,31(1):2-5.
[12] ROBERTS C.The cornea is not a piece of plastic[J].J Refract Surg,2000,16(4):407-413.
[13] ROBERTS C J,DUPPS W J.Biomechanics of corneal ectasia and biomechanical treatments[J].J Cataract Refract Surg,2014,40(6):991-998.
[14] DUPPS W J,ROBERTS C J.Corneal biomechanics:a decade later[J].J Cataract Refract Surg,2014,40(6):857.
[15] BERGMANSON J P,HORNE J,DOUGHTY M J,GARCIA M,GONDO M.Assessment of the number of lamellae in the central region of the normal human corneal stroma at the resolution of the transmission electron microscope[J].Eye Contact Lens,2005,31(6):281-287.
[16] MULLER L J,PELS E,SCHURMANS L R,VRENSEN G F.A new three-dimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma[J].Exp Eye Res,2004,78(3):493-501.
[17] PARRY D A,CRAIG A S.Electron microscope evidence for an 80 A unit in collagen fibrils[J].Nature,1979,282(5735):213-215.
[18] BAO F J,DENG M L,WANG Q M.The research advance of measuring techniques on corneoscleral constitutive parameters[J].Chin J Ophthalmol,2015,51(11):875-880.
包芳军,邓曼丽,王勤美.角巩膜生物力学性能测量技术的研究进展[J].中华眼科杂志,2015,51(11):875-880.
[19] ELSHEIKH A,WANG D,BROWN M,RAMA P,CAMPANELLI M,PYE D.Assessment of corneal biomechanical properties and their variation with age[J].Curr Eye Res,2007,32(1):11-19.
[20] AMATO D,ODDONE F,NUBILE M,GISOLDI R A,VILLANI C M,POCOBELLI A.Pre-cut donor tissue for Descemet stripping automated keratoplasty:anterior hinged lamella on versus off[J].Br J Ophthalmol,2010,94(4):519-522.
[21] GLASS D H,ROBERTS C J,LITSKY A S,WEBER P A.A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis[J].Invest Ophthalmol Vis Sci,2008,49(9):3919-3926.
[22] WOLLENSAK G,SPOERL E,SEILER T.Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking[J].J Cataract Refract Surg,2003,29(9):1780-1785.
[23] ZENG Y,YANG J,HUANG K,LEE Z,LEE X.A comparison of biomechanical properties between human and porcine cornea[J].J Biomech,2001,34(4):533-537.
[24] HOELTZEL D A,ALTMAN P,BUZARD K,CHOE K.Strip extensiometry for comparison of the mechanical response of bovine,rabbit,and human corneas[J].J Biomech Eng,1992,114(2):202-215.
[25] HJORTDAL J O.Regional elastic performance of the human cornea[J].J Biomech,1996,29(7):931-942.
[26] ANDREASSEN T T,SIMONSEN A H,OXLUND H.Biomechani-cal properties of keratoconus and normal corneas[J].Exp Eye Res,1980,31(4):435-441.
[27] SEILER T,MATALLANA M,SENDLER S,BENDE T.Does Bowman’s layer determine the biomechanical properties of the cornea?[J].Refract Corneal Surg,1992,8(2):139-142.
[28] ELSHEIKH A,ALHASSO D,RAMA P.Assessment of the epithelium’s contribution to corneal biomechanics[J].Exp Eye Res,2008,86(2):445-451.
[29] LABATE C,LOMBARDO M,DE SANTO M P,DIAS J,ZIEBARTH N M,LOMBARDO G.Multiscale investigation of the depth-dependent mechanical anisotropy of the human corneal stroma[J].Invest Ophthalmol Vis Sci,2015,56(6):4053-4060.
[30] ELSHEIKH A,ALHASSO D.Mechanical anisotropy of porcine cornea and correlation with stromal microstructure[J].Exp Eye Res,2009,88(6):1084-1091.
[31] WANG X,LI X,CHEN W,HE R,GAO Z,FENG P.Effects of ablation depth and repair time on the corneal elastic modulus after laser in situ keratomileusis[J].Biomed Eng Online,2017,16(1):20.
[32] YANG J,ZENG Y J,LI Z H.Biomechanical properties of human cornea[J].Acta Biophysica Sinica,1999,15(1):208.
杨坚,曾衍钧,李志辉.人角膜的生物力学特性[J].生物物理学报,1999,15(1):208.
[33] LIAN L Y,SONG X J,ZHANG X R.Biomechanical parameter of normal rabbit cornea[J].Chin J Exp Ophthalmol,2012,30(4):346-348.
连玲艳,宋秀君,张晓融.正常兔角膜生物力学特性和参数的测定[J].中华实验眼科杂志,2012,30(4):346-348.

相似文献/References:

[1]戴静 陈建苏 招志毅 谢耀元.富血小板凝胶对角膜基质生物学功能的影响[J].眼科新进展,2013,33(8):000.
[2]戴静 陈建苏 招志毅 谢耀元.脱细胞角膜基质应用于组织工程角膜的研究[J].眼科新进展,2013,33(11):000.
[3]刘海,李妍,杨忠昆,等. 角膜基质内羊膜移植治疗兔大泡性角膜病变的实验研究[J].眼科新进展,2015,35(8):728.[doi:10.13389/j.cnki.rao.2015.0199]
 LIU Hai,LI Yan,YANG Zhong-Kun,et al. Amniotic membrane transplantation in corneal matrix for bullous keratopathy[J].Recent Advances in Ophthalmology,2015,35(11):728.[doi:10.13389/j.cnki.rao.2015.0199]
[4]杨继玲,邵毅,张颖,等.自制细胞外基质胶泪道羊膜生物学特性及修复泪道损伤的实验研究[J].眼科新进展,2016,36(4):306.[doi:10.13389/j.cnki.rao.2016.0083]
 YANG Ji-Ling,SHAO Yi,ZHANG Ying,et al.Biological characteristics of extracellular matrix lacrimal duct amniotic membrane and its repair effects on rabbit lacrimal duct injure[J].Recent Advances in Ophthalmology,2016,36(11):306.[doi:10.13389/j.cnki.rao.2016.0083]
[5]贾洪真,庞旭,毛科杰,等.紫外光A/核黄素角膜交联后兔角膜基质内基质金属蛋白酶-1含量的变化[J].眼科新进展,2016,36(5):428.[doi:10.13389/j.cnki.rao.2016.0114]
 JIA Hong-Zhen,PANG Xu,MAO Ke-Jie,et al.Changes of MMP-1 in rabbit corneal stroma after ultrovialet A/riboflavin corneal cross-linking[J].Recent Advances in Ophthalmology,2016,36(11):428.[doi:10.13389/j.cnki.rao.2016.0114]
[6]黎乐平,康红花,马明洋,等.细胞外基质胶羊膜棒的生物学特性及其在雌兔干眼中的应用[J].眼科新进展,2018,38(8):709.[doi:10.13389/j.cnki.rao.2018.0167]
 LI Le-Ping,KANG Hong-Hua,MA Ming-Yang,et al.Biological characteristics of ECM amniotic membrane rod and its application in rabbit dry eyes[J].Recent Advances in Ophthalmology,2018,38(11):709.[doi:10.13389/j.cnki.rao.2018.0167]
[7]薛超,王雁,向尧齐,等.近视患者角膜在体与离体生物力学特性相关性初步研究[J].眼科新进展,2021,41(10):943.[doi:10.13389/j.cnki.rao.2021.0198]
 XUE Chao,WANG Yan,XIANG Yaoqi,et al.Correlation of corneal biomechanical properties of myopic patients in vivo and in vitro[J].Recent Advances in Ophthalmology,2021,41(11):943.[doi:10.13389/j.cnki.rao.2021.0198]

备注/Memo

备注/Memo:
国家自然科学基金资助项目(编号:81670884)
更新日期/Last Update: 2019-11-18