[1]薛超,王雁,向尧齐,等.近视患者角膜在体与离体生物力学特性相关性初步研究[J].眼科新进展,2021,41(10):943-947.[doi:10.13389/j.cnki.rao.2021.0198]
 XUE Chao,WANG Yan,XIANG Yaoqi,et al.Correlation of corneal biomechanical properties of myopic patients in vivo and in vitro[J].Recent Advances in Ophthalmology,2021,41(10):943-947.[doi:10.13389/j.cnki.rao.2021.0198]
点击复制

近视患者角膜在体与离体生物力学特性相关性初步研究/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
41卷
期数:
2021年10期
页码:
943-947
栏目:
应用研究
出版日期:
2021-10-05

文章信息/Info

Title:
Correlation of corneal biomechanical properties of myopic patients in vivo and in vitro
作者:
薛超王雁向尧齐沈岷吴迪
300020 天津市,天津市眼科医院,天津市眼科学与视觉科学重点实验室,天津市眼科研究所(薛超,王雁,吴迪);300020 天津市,天津大学机械工程学院(向尧齐,沈岷)
Author(s):
XUE Chao1WANG Yan1XIANG Yaoqi2SHEN Min2WU Di1
1.Tianjin Eye Hospital,Tianjin Key Laboratory of Ophthalmology and Visual Science,Tianjin Eye Institute,Clinical College of Ophthalmology,Tianjin Medical University ,Tianjin 300020,China
2.School of Mechanical Engineering,Tianjin University,Tianjin 300020,China
关键词:
角膜生物力学特性单轴拉伸试验Corvis ST角膜生物力学分析仪
Keywords:
cornea biomechanical property uniaxial tensile test Corvis ST corneal biomechanics analyzer
分类号:
R778.1
DOI:
10.13389/j.cnki.rao.2021.0198
文献标志码:
A
摘要:
目的 探讨近视患者角膜在体与离体生物力学参数的关系。方法 对拟行飞秒激光小切口角膜基质透镜取出术(SMILE)的近视患者术前利用Corvis ST角膜生物力学分析仪行在体角膜生物力学参数测量,术后将术中获取的角膜基质透镜进行单轴拉伸试验来获取其离体生物力学参数。采用Pearson相关分析法探讨近视患者角膜在体与离体生物力学参数的关系。结果 近视患者离体角膜基质在应力为0.02 MPa时,对应的弹性模量为(1.26±0.71)MPa。相关性分析结果表明,弹性模量与Corvis ST角膜生物力学分析仪测量得到的17个在体动态角膜反应参数中的14个参数均显著相关;回归分析得到的回归方程为:弹性模量=-49.470+9.188A1Time+9.946A1Velocity-0.195DefAMax(ms)+0.077SP-HC[A1Time:第1次压平时间,A1Velocity:第1次压平速度,DefAMax:最大的偏离幅度(ms),SP-HC:最大凹陷时角膜硬度参数],回归模型具有统计学意义(F=883.948,P=0.000)。结论 近视患者角膜基质弹性模量可以通过在体角膜生物力学参数测量结果初步推算。
Abstract:
Objective To investigate biomechanical properties of cornea of myopic patients in vivo and in vitro. Methods The in vivo biomechanical measurements were performed using Corvis? ST corneal biomechanics analyzer in myopic patients before femtosecond small incision lenticule extraction (SMILE) surgery. After the SMILE surgery, strip specimens cut from corneal stromal lenticule were subjected to in vitro measurements with the uniaxial tensile test. The relationship between the in vivo biomechanical parameters and the in vitro mechanical parameters of the cornea was obtained by Pearson correlation method.Results The value of elastic modulus was (1.26±0.71) MPa with in vitro test at the stress of 0.02 MPa. Elastic modulus was significantly correlated with 14 of 17 in vivo dynamic corneal response (DCR) parameters. The regression equation E=-49.470 + 9.188A1Time + 9.946A1Velocity-0.195 DefAMax (ms)+ 0.077SP-HC was obtained. The regression model had statistical significance (F=883.948,P=0.000). Conclusion Elastic modulus estimations of corneal stroma of myopic patients can be obtained from in vivo mechanical measurements, and further research with a large sample size is still needed.

参考文献/References:

[1] HUSEYNOVA T,WARING G O T,ROBERTS C,KRUEGER R R,TOMITA M.Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes[J].Am J Ophthalmol,2014,157(4):885-893.
[2] ROBERTS C.Biomechanical customization:the next generation of laser refractive surgery[J].J Cataract Refract Surg,2005,31(1):2-5.
[3] ROBERTS C.The cornea is not a piece of plastic[J].J Refract Surg,2000,16(4):407-413.
[4] DUPPS W J Jr,ROBERTS C J.Corneal biomechanics:a decade later[J].J Cataract Refract Surg,2014,40(6):857.
[5] SPIRU B,KLING S,HAFEZI F,SEKUNDO W.Biomechanical differences between femtosecond lenticule extraction (FLEX) and small incision lenticule extraction (SMILE) tested by 2D-extensometry in ex vivo porcine eyes[J].Invest Ophthalmol Vis Sci,2017,58(5):2591-2595.
[6] HASSAN Z,MODIS L Jr,SZALAI E,BERTA A,NEMETH G.Examination of ocular biomechanics with a new Scheimpflug technology after corneal refractive surgery[J].Cont Lens Anterior Eye,2014,37(5):337-341.
[7] SEKUNDO W,KUNERT K S,BLUM M.Small incision corneal refractive surgery using the small incision lenticule extraction (SMILE) procedure for the correction of myopia and myopic astigmatism:results of a 6 month prospective study[J].Br J Ophthalmol,2011,95(3):335-339.
[8] WANG Y,MA J,ZHANG J,DOU R,ZHANG H,LI L,et al.Incidence and management of intraoperative complications during small-incision lenticule extraction in 3004 cases[J].J Cataract Refract Surg,2017,43(6):796-802.
[9] WU D,WANG Y,ZHANG L,WEI S,TANG X.Corneal biomechanical effects:small-incision lenticule extraction versus femtosecond laser-assisted laser in situ keratomileusis[J].J Cataract Refract Surg,2014,40(6):954-962.
[10] MULLER L J,PELS E,SCHURMANS L R,VRENSEN G F.A new three-dimensional model of the organization of proteoglycans and collagen fibrils in the human corneal stroma[J].Exp Eye Res,2004,78(3):493-501.
[11] PARRY D A,CRAIG A S.Electron microscope evidence for an 80 A unit in collagen fibrils[J].Nature,1979,282(5735):213-215.
[12] ROBERTS C J.Concepts and misconceptions in corneal biomechanics[J].J Cataract Refract Surg,2014,40(6):862-869.
[13] VINCIGUERRA R,AMBROSIO R Jr,ELSHEIKH A,ROBERTS C J,LOPES B,MORENGHI E,et al.Detection of keratoconus with a new biomechanical index[J].J Refract Surg,2016,32(12):803-810.
[14] JODA A A,SHERVIN M M,KOOK D,ELSHEIKH A.Development and validation of a correction equation for Corvis tonometry[J].Comput Methods Biomech Biomed Engin,2016,19(9):943-953.
[15] WANG X,LI X,CHEN W,HE R,GAO Z,FENG P.Effects of ablation depth and repair time on the corneal elastic modulus after laser in situ keratomileusis[J].Biomed Eng Online,2017,16(1):20.
[16] ZHANG H,KHAN M A,ZHANG D,QIN X,LIN D,LI L.Corneal biomechanical properties after FS-LASIK with residual bed thickness less than 50% of original corneal thickness[J].J Ophthalmol,2018,2018:2752945.
[17] WOLLENSAK G,SPOERL E,SEILER T.Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking[J].J Cataract Refract Surg,2003,29(9):1780-1785.
[18] ROBERTS C J,MAHMOUD A M,BONS J P,HOSSAIN A,ELSHEIKH A,VINCIGUERRA R,et al.Introduction of two novel stiffness parameters and interpretation of air puff-induced biomechanical deformation parameters with a dynamic scheimpflug analyzer[J].J Refract Surg,2017,33(4):266-273.
[19] CHAN T C,WANG Y M,YU M,JHANJI V.Comparison of corneal dynamic parameters and tomographic measurements using Scheimpflug imaging in keratoconus[J].Br J Ophthalmol,2018,102(1):42-47.
[20] LEE H,ROBERTS C J,AMBROSIO R Jr,ELSHEIKH A,KANG D S Y,KIM T I.Effect of accelerated corneal crosslinking combined with transepithelial photorefractive keratectomy on dynamic corneal response parameters and biomechanically corrected intraocular pressure measured with a dynamic Scheimpflug analyzer in healthy myopic patients[J].J Cataract Refract Surg,2017,43(7):937-945.
[21] SMEDOWSKI A,WEGLARZ B,TARNAWSKA D,KAARNIRANTA K,WYLEGALA E.Comparison of three intraocular pressure measurement methods including biomechanical properties of the cornea[J].Invest Ophthalmol Vis Sci,2014,55(2):666-673.
[22] FRANCIS M,PAHUJA N,SHROFF R,GOWDA R,MATALIA H,SHETTY R,et al.Waveform analysis of deformation amplitude and deflection amplitude in normal,suspect,and keratoconic eyes[J].J Cataract Refract Surg,2017,43(10):1271-1280.
[23] ALI N Q,PATEL D V,MCGHEE C N.Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer[J].Invest Ophthalmol Vis Sci,2014,55(6):3651-3659.
[24] BAK-NIELSEN S,PEDERSEN I B,IVARSEN A,HJORTDAL J.Dynamic Scheimpflug-based assessment of keratoconus and the effects of corneal cross-linking[J].J Refract Surg,2014,30(6):408-414.
[25] MIKIELEWICZ M,KOTLIAR K,BARRAQUER R I,MICHAEL R.Air-pulse corneal applanation signal curve parameters for the characterisation of keratoconus[J].Br J Ophthalmol,2011,95(6):793-798.
[26] NAGRA M,GILMARTIN B,LOGAN N S.Estimation of ocular volume from axial length[J].Br J Ophthalmol,2014,98(12):1697-1701.

相似文献/References:

[1]王存 薛芸霞 杨亚兵 傅婷 李志杰 夏潮涌.小鼠出生前后角膜神经分布的变化[J].眼科新进展,2012,32(6):000.
[2]李雪 赵延军 张丽 胡琦 王珂萌.近视眼患者LASIK和LASEK术后角膜后表面变化的比较研究[J].眼科新进展,2012,32(6):000.
[3]赵伟 周瑾 郭梦翔 项道满.地塞米松对碱烧伤后大鼠角膜核转录因子-κB活化的影响[J].眼科新进展,2013,33(7):000.
[4]张研 陆晓和.角膜血管新生机制与调控新进展[J].眼科新进展,2008,28(9):000.
[5]王茜 吴良成 李铭.准分子激光角膜屈光手术后非球面系数的影响因素[J].眼科新进展,2012,32(4):000.
[6]付馨余 邹文进 黄明汉 赵静博.多西环素对碱烧伤大鼠角膜组织中NF-κB和bcl-2表达的影响[J].眼科新进展,2013,33(4):000.
[7]闵捷 胡丹 孙丽娟 雷润佳 王鹤霏 蔡莉.紫外光核黄素胶原交联对兔角膜碱烧伤作用的实验研究[J].眼科新进展,2013,33(5):000.
[8]白华 黄一飞.Boston型人工角膜的临床并发症及其处理[J].眼科新进展,2013,33(9):000.
[9]唐敏 席兴华 唐罗生 岳丽菁.人羊膜匀浆提取液对兔角膜成纤维细胞增殖和TGF-β1mRNA表达的影响[J].眼科新进展,2013,33(11):000.
[10]李海中 彭清华 王芬 姚小磊 李文娟.密蒙花总黄酮对去势雄鼠角膜组织Fas、FasL表达的影[J].眼科新进展,2013,33(12):000.

备注/Memo

备注/Memo:
国家自然科学基金项目(编号:81670884)
更新日期/Last Update: 2021-10-05