[1]肖丹,兰长骏,杨琴,等.近视相关RDH5基因内含子区单核苷酸多态性位点rs3138144(GC)对其启动子功能的影响[J].眼科新进展,2021,41(3):223-226.[doi:10.13389/j.cnki.rao.2021.0046]
 XIAO Dan,LAN Changjun,YANG Qin,et al.Effect of single nucleotide polymorphism locus rs3138144 of myopia-related RDH5 gene on the function of its promoter[J].Recent Advances in Ophthalmology,2021,41(3):223-226.[doi:10.13389/j.cnki.rao.2021.0046]
点击复制

近视相关RDH5基因内含子区单核苷酸多态性位点rs3138144(G>C)对其启动子功能的影响/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
41卷
期数:
2021年3期
页码:
223-226
栏目:
实验研究
出版日期:
2021-03-05

文章信息/Info

Title:
Effect of single nucleotide polymorphism locus rs3138144 of myopia-related RDH5 gene on the function of its promoter
作者:
肖丹兰长骏杨琴刘阳谭青青廖萱
637000 四川省南充市,川北医学院附属医院眼科,川北医学院眼视光学系
Author(s):
XIAO DanLAN ChangjunYANG QinLIU YangTAN QingqingLIAO Xuan
Department of Ophthalmology,Affiliated Hospital of North Sichuan Medical College, Department of Ophthalmology & Optometry,North Sichuan Medical College,Nanchong 637000,Sichuan Province,China
关键词:
RDH5基因单核苷酸多态性启动子基因表达
Keywords:
RDH5 single nucleotide polymorphism promoter gene expression
分类号:
R778
DOI:
10.13389/j.cnki.rao.2021.0046
文献标志码:
A
摘要:
目的 探讨近视相关视黄醇脱氢酶5(RDH5)基因内含子区单核苷酸多态性(SNP)位点rs3138144(G>C)对其启动子功能的影响。方法 从初始密码子ATG往前扩增1500 bp的5’端上游调控区域作为拟研究的启动子片段,以包含rs3138144位点的长220 bp的区段作为研究的内含子片段。与萤火虫荧光素酶报告基因载体pGL3-Basic进行重组质粒的克隆与鉴定,构建rs3138144荧光素酶报告基因质粒野生型(pGL3-RDH5-G)和rs3138144荧光素酶报告基因质粒突变型(pGL3-RDH5-C)载体,同时设定pGL3-Basic作为对照。与内参质粒pRL-TK共转染ARPE-19细胞及HEK293细胞,通过双荧光素酶报告基因系统检测报告基因活性。结果 在ARPE-19细胞中,野生型rs3138144位点荧光素酶相对活性为0.806±0.156,突变型为0.525±0.130,对照为0.085±0.027,野生型荧光素酶相对活性高于突变型及对照,差异均有统计学意义(均为P<0.05)。在HEK293细胞中,野生型rs3138144位点荧光素酶相对活性为0.075±0.013,突变型为0.040±0.006,对照为0.004±0.001,野生型高于突变型及对照,差异均有统计学意义(均为P<0.05)。等位基因G及等位基因C均能与核蛋白中的某种转录因子结合,灰度值分析结果提示等位基因G结合能力更强。结论 RDH5基因内含子区SNP位点rs3138144(G>C)影响RDH5基因启动子转录活性。
Abstract:
Objective To investigate the effect of single nucleotide polymorphism (SNP) locus rs3138144 (G>C) in the intron region of myopia-related RDH5 gene on its promoter’s function.Methods The initial codon ATG forward amplified to 1500 bp in the upstream regulatory region of the 5 ’end was selected as the promoter fragment to be studied, and the 220 bp region containing the rs3138144 locus was used as the intron fragment. The recombinant plasmids were cloned and identified with the firefly luciferase reporter gene vector pGL3-Basic. The wild type (pGL3-RDH5-G) and the mutant type (pGL3-RDH5) of rs3138144 luciferase reporter gene plasmid were constructed, and the pGL3-Basic as a control. ARPE-19 and HEK293 cells were co-transfected with internal reference renilla luciferase reporter gene plasmid pRL-TK, and luciferase activity was detected by double luciferase reporter gene system.Results In ARPE-19 cells, the relative activity of the luciferase reporter gene at rs3138144 locus was 0.806±0.156 in the wild type, 0.525±0.130 in the mutant type, and 0.085±0.027 in the control. The value of wild type was higher than the mutant type and the control, and the differences were statistically significant (all P<0.05). In HEK293T cells, the relative activity of the luciferase reporter gene at rs3138144 locus was 0.075±0.013 in the wild type, 0.040±0.006 in the mutant type, and 0.004±0.001 in the control. The value of wild type was higher than that in the mutant and the control, and the differences were statistically significant (both P<0.05). Both allele G and allele C can bind to a certain transcription factor in nucleoprotein, and the gray value analysis indicated that the binding ability of allele G was stronger.Conclusion The SNP site rs3138144 (G>C) in the intron region can affect the transcription activity of RDH5 gene promoter.

参考文献/References:

[1] HOLDEN B A,FRICKE T R,WILSON D A,JONG M,NAIDOO K S,SANKARIDURG P,et al.Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J].Ophthalmology,2016,123(5):1036-1042.
[2] HYSI P G,CHOQUET H,KHAWAJA A P,WOJCIECHOWSKI R,TEDJA M S,YIN J,et al.Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia[J].Nat Genet,2020,52(4):401-407.
[3] LIAO X,LAN C J.Advances in genome-wide association study of myopia[J].Chin J Ophthalmol,2016,52(10):794-800.
[4] MOUNTJOY E,DAVIES N M,PLOTNIKOV D,SMITH G D,RODRIGUEZ S,WILLIAMS C E,et al.Education and myopia:assessing the direction of causality by mendelian randomisation[J].BMJ,2018,361:k2022.
[5] FAN Q,VERHOEVEN V J,WOJCIECHOWSKI R,BARATHI V A,HYSI P G,GUGGENHEIM J A,et al.Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error[J].Nat Commun,2016,7:11008.
[6] TEDJA M S,WOJCIECHOWSKI R,HYSI P G,ERIKSSON N,FURLOTTE N A,VERHOEVEN V,et al.Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error[J].Nat Genet,2018,50(6):834-848.
[7] ZHANG Y,WILDSOET C F.RPE and choroid mechanisms underlying ocular growth and myopia[J].Prog Mol Biol Transl Sci,2015,134:221-240.
[8] LIXA C,CLARKSON M W,IQBAL A,MOON T M,ALMEIDA F,PETI W,et al.Retinoic acid binding leads to CRABP2 rigidification and dimerization[J].Biochemistry,2019,58(41):4183-4194.
[9] VERHOEVEN V J,HYSI P G,WOJCIECHOWSKI R,FAN Q,GUGGENHEIM J A,HOHN R,et al.Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia[J].Nat Genet,2013,45(3):314-318.
[10] KIEFER A K,TUNG J Y,DO C B,HINDS D A,MOUNTAIN J L,FRANCKE U,et al.Genome-wide analysis points to roles for extracellular matrix remodeling,the visual cycle,and neuronal development in myopia[J].PLoS Genet,2013,9(2):e1003299.
[11] LIAO X,LAN C,LIAO D,TIAN J,HUANG X.Exploration and detection of potential regulatory variants in refractive error GWAS[J].Sci Rep,2016,6:33090.
[12] SAHU B,MAEDA A.Retinol dehydrogenases regulate vitamin a metabolism for visual function[J].Nutrients,2016,8(11):746.
[13] YAMAMOTO H,SIMON A,ERIKSSON U,HARRIS E,BERSON E L,DRYJA T P.Mutations in the gene encoding 11-cis retinol dehydrogenase cause delayed dark adaptation and fundus albipunctatus[J].Nat Genet,1999,22(2):188-191.
[14] SULTAN N,ALI I,BUKHARI S A,BAIG S M,ASIF M,QASIM M,et al.A novel mutation in RDH5 gene causes retinitis pigmentosa in consanguineous Pakistani family[J].Genes Genomics,2018,40(5):553-559.
[15] LIU X,LIU L,LI H,XU F,JIANG R,SUI R.RDH5 retinopathy (fundus albipunctatus) with preserved rod function[J].Retina,2015,35(3):582-589.
[16] MAKIYAMA Y,OOTO S,HANGAI M,OGINO K,GOTOH N,OISHI A,et al.Cone abnormalities in fundus albipunctatus associated with RDH5 mutations assessed using adaptive optics scanning laser ophthalmoscopy[J].Am J Ophthalmol,2014,157(3):558-570.
[17] SERGOUNIOTIS P I,SOHN E H,LI Z,MCBAIN V A,WRIGHT G A,MOORE A T,et al.Phenotypic variability in RDH5 retinopathy (Fundus Albipunctatus)[J].Ophthalmology,2011,118(8):1661-1670.
[18] CLAGETT-DAME M,DELUCA H F.The role of vitamin A in mammalian reproduction and embryonic development[J].Annu Rev Nutr,2002,22:347-381.
[19] MAO J F,LIU S Z,DOU X Q.Retinoic acid metabolic change in retina and choroid of the guinea pig with lens-induced myopia[J].Int J Ophthalmol,2012,5(6):670-674.
[20] McFADDEN S A,HOWLETT M H,MERTZ J R,WALLMAN J.Acute effects of dietary retinoic acid on ocular components in the growing chick[J].Exp Eye Res,2006,83(4):949-961.
[21] LIU B,CALTON M A,ABELL N S,BENCHORIN G,GLOUDEMANS M J,CHEN M,et al.Genetic analyses of human fetal retinal pigment epithelium gene expression suggest ocular disease mechanisms[J].Commun Biol,2019,2:186.
[22] MAURANO M T,HUMBERT R,RYNES E,THURMAN R E,HAUGEN E,WANG H,et al.Systematic localization of common disease-associated variation in regulatory DNA[J].Science,2012,337(6099):1190-1195.
[23] FARH K K,MARSON A,ZHU J,KLEINEWIETFELD M,HOUSLEY W J,BEIK S,et al.Genetic and epigenetic fine mapping of causal autoimmune disease variants[J].Nature,2015,518(7539):337-343.
[24] SHERRY S T,WARD M H,KHOLODOV M,BAKER J,PHAN L,SMIGIELSKI E M,et al.dbSNP:the NCBI database of genetic variation[J].Nucleic Acids Res,2001,29(1):308-311.
[25] HEYN P,KALINKA A T,TOMANCAK P,NEUGEBAUER K M.Introns and gene expression:cellular constraints,transcriptional regulation,and evolutionary consequences[J].Bioessays,2015,37(2):148-154.

相似文献/References:

[1]张沐,康丽华,管怀进.MicroRNA相关单核苷酸多态性与眼部疾病关系的研究进[J].眼科新进展,2014,34(11):1083.[doi:10.13389/j.cnki.rao.2014.0301]
 ZHANG Mu,KANG Li-Hua,GUAN Huai-Jin.Recent advances in relationship between microRNA-related SNPs and ocular diseases[J].Recent Advances in Ophthalmology,2014,34(3):1083.[doi:10.13389/j.cnki.rao.2014.0301]
[2]戎晗,顾珊珊,张国伟,等.非编码区单核苷酸多态性与眼部疾病关系的研究进展[J].眼科新进展,2016,36(4):380.[doi:10.13389/j.cnki.rao.2016.0104]
 RONG Han,GU Shan-Shan,ZHANG Guo-Wei,et al.Recent advances in relationship between SNPs in noncoding regions and ocular diseases[J].Recent Advances in Ophthalmology,2016,36(3):380.[doi:10.13389/j.cnki.rao.2016.0104]
[3]顾珊珊,戎晗,张国伟,等.单核苷酸多态性与年龄相关性白内障的研究进展[J].眼科新进展,2016,36(7):691.[doi:10.13389/j.cnki.rao.2016.0184]
 GU Shan-Shan,RONG Han,ZHANG Guo-Wei,et al.Progress on single nucleotide polymorphism and agerelated cataract[J].Recent Advances in Ophthalmology,2016,36(3):691.[doi:10.13389/j.cnki.rao.2016.0184]
[4]王勇,杨梅,管怀进.ERCC6基因单核苷酸多态性与年龄相关性白内障的关联研究[J].眼科新进展,2016,36(11):1029.[doi:10.13389/j.cnki.rao.2016.0274]
 WANG Yong,YANG Mei,GUAN Huai-Jin.Association of ERCC6 gene single nucleotide polymorphisms with age-related cataract[J].Recent Advances in Ophthalmology,2016,36(3):1029.[doi:10.13389/j.cnki.rao.2016.0274]
[5]王勇,杨梅,李渤,等.DNA甲基化转移酶(DNMT)3b基因的单核苷酸多态性与年龄相关性白内障[J].眼科新进展,2017,37(1):035.[doi:10.13389/j.cnki.rao.2017.0009]
 WANG Yong,YANG Mei,LI Bo,et al.Association of DNMT3b gene single nucleotide polymorphisms with age-related cataract[J].Recent Advances in Ophthalmology,2017,37(3):035.[doi:10.13389/j.cnki.rao.2017.0009]
[6]康丽华,邹茜,杨梅,等.年龄相关性白内障患者沉默信息调节因子1(SIRT1)的单核苷酸多态性研究[J].眼科新进展,2017,37(10):939.[doi:10.13389/j.cnki.rao.2017.0238]
 KANG Li-Hua,ZOU Xi,YANG Mei,et al.Association of single nucleotide polymorphism of SIRT1 gene with age-related cataract[J].Recent Advances in Ophthalmology,2017,37(3):939.[doi:10.13389/j.cnki.rao.2017.0238]
[7]苏舒,朱蓉嵘,胡楠,等.DNA修复基因的多态性以及DNA损伤与年龄相关性白内障的关系[J].眼科新进展,2017,37(11):1040.[doi:10.13389/j.cnki.rao.2017.0263]
 SU Shu,ZHU Rong-Rong,HU Nan,et al.Single nucleotide polymorphisms in DNA repair genes and the association of DNA damage with age-related cataract[J].Recent Advances in Ophthalmology,2017,37(3):1040.[doi:10.13389/j.cnki.rao.2017.0263]
[8]殷学伟,刘滨,毕宏生,等.单核苷酸多态性与葡萄膜炎发生的研究进展[J].眼科新进展,2018,38(8):790.[doi:10.13389/j.cnki.rao.2018.0187]
 YIN Xue-Wei,LIU Bin,BI Hong-Sheng,et al.Research advances in relationship between single nucleotide polymorphisms and the occurrence of uveitis[J].Recent Advances in Ophthalmology,2018,38(3):790.[doi:10.13389/j.cnki.rao.2018.0187]
[9]严丽英,王星,邹云春,等.中国汉族人群SOX2基因与高度近视的关联研究[J].眼科新进展,2018,38(9):851.[doi:10.13389/j.cnki.rao.2018.0201]
 YAN Li-Ying,WANG Xing,ZOU Yun-Chun,et al.Association study of polymorphisms in the SOX2 gene with high myopia in Chinese Han population[J].Recent Advances in Ophthalmology,2018,38(3):851.[doi:10.13389/j.cnki.rao.2018.0201]
[10]杨瑾,孙嘉悦,刘涛.原发性闭角型青光眼遗传流行病学研究进展[J].眼科新进展,2019,39(4):389.[doi:10.13389/j.cnki.rao.2019.0089]
 YANG Jin,SUN Jia-Yue,LIU Tao.Overview of the genetic epidemiology of primary angle-closure glaucoma[J].Recent Advances in Ophthalmology,2019,39(3):389.[doi:10.13389/j.cnki.rao.2019.0089]

备注/Memo

备注/Memo:
四川省科技厅应用基础研究项目(编号:2019YJ0381);博士科研基金项目(编号:CBY20-QD05)
更新日期/Last Update: 2021-03-05