[1]王紫郦,魏婷婷,谢田华,等.线粒体功能紊乱在糖尿病视网膜病变中作用的研究进展[J].眼科新进展,2022,42(12):999-1003.[doi:10.13389/j.cnki.rao.2022.0204]
 WANG Zili,WEI Tingting,XIE Tianhua,et al.Research progress on the role of mitochondrial dysfunction in diabetic retinopathy[J].Recent Advances in Ophthalmology,2022,42(12):999-1003.[doi:10.13389/j.cnki.rao.2022.0204]
点击复制

线粒体功能紊乱在糖尿病视网膜病变中作用的研究进展/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
42卷
期数:
2022年12期
页码:
999-1003
栏目:
文献综述
出版日期:
2022-12-05

文章信息/Info

Title:
Research progress on the role of mitochondrial dysfunction in diabetic retinopathy
作者:
王紫郦魏婷婷谢田华蔡季平姚勇
214023 江苏省无锡市,南京医科大学附属无锡人民医院眼科(王紫郦,谢田华,蔡季平,姚勇);214023 江苏省无锡市,南京医科大学附属无锡人民医院临床研究中心(魏婷婷)
Author(s):
WANG Zili1WEI Tingting2XIE Tianhua1CAI Jiping1YAO Yong1
1.Department of Ophthalmology,the Affiliated Wuxi People’s Hospital of Nanjing Medical University,Wuxi 214023,Jiangsu Province,China
2.Center of Clinical Research,the Affiliated Wuxi People’s Hospital of Nanjing Medical University,Wuxi 214023,Jiangsu Province,China
关键词:
糖尿病视网膜病变线粒体线粒体功能紊乱。
Keywords:
diabetic retinopathy mitochondria mitochondrial dysfunction
分类号:
R774.1
DOI:
10.13389/j.cnki.rao.2022.0204
文献标志码:
A
摘要:
糖尿病视网膜病变 (DR) 作为最常见的视网膜血管病变,是40岁以上人群主要致盲性眼病之一。抗血管内皮生长因子 (VEGF) 疗法在 DR 患者中有显著的临床效果,但需要长期不间断治疗,且大多数患者未能实现具有临床意义的视力改善。因此,寻找新的治疗靶点和方法迫在眉睫。线粒体是真核细胞中负责产生化学能量并协调细胞信号的细胞器,对维持细胞结构和功能起着关键作用。越来越多的研究表明,线粒体参与了 DR 病理生理过程。本文就线粒体功能紊乱在 DR 发病过程中的作用展开综述,为 DR 的发病机制和治疗方案提供新的思路。
Abstract:
Diabetic retinopathy (DR), the most common retinal vasculopathy, is one of the primary causes of blindness in people over 40. The anti-vascular endothelial growth factor therapy has shown significant clinical effects in DR patients, but it needs long-term uninterrupted treatment with no clinically significant vision improvement in most patients. Therefore, there is an urgent need to find new therapeutic targets and strategies. Mitochondria are cellular organelles responsible for the generation of chemical energy and coordination of related cell signals in eukaryotic cells. They play a crucial role in maintaining cell structure and function. A growing body of studies demonstrates that mitochondria are involved in the pathogenesis of DR. This review focuses on the role of mitochondrial dysfunction in the pathogenesis of DR and provides novel ideas for the pathogenesis and treatment of DR.

参考文献/References:

[1] WONG T Y,CHEUNG C M,LARSEN M,SHARMA S,SIM R.Diabetic retinopathy [J].Nat Rev Dis Primers,2016,2:16012.
[2] THE LANCET DIABETES ENDOCRINOLOGY.Under the lens:diabetic retinopathy [J].Lancet Diabetes Endocrinol,2020,8(11):869.
[3] WYKOFF C C,KHURANA R N,NGUYEN Q D,KELLY S P,LUM F,HALL R,et al.Risk of blindness among patients with diabetes and newly diagnosed diabetic retinopathy [J].Diabetes Care,2021,44(3):748-756.
[4] KANG Q,YANG C.Oxidative stress and diabetic retinopathy:molecular mechanisms,pathogenetic role and therapeutic implications [J].Redox Biol,2020,37:101799.
[5] COUTURIER A,REY P A,ERGINAY A,LAVIA C,BONNIN S,DUPAS B,et al.Widefield OCT-angiography and fluorescein angiography assessments of nonperfusion in diabetic retinopathy and edema treated with anti-vascular endothelial growth factor [J].Ophthalmology,2019,126(12):1685-1694.
[6] HANNA R M,BARSOUM M,ARMAN F,SELAMET U,HASNAIN H,KURTZ I.Nephrotoxicity induced by intravitreal vascular endothelial growth factor inhibitors:emerging evidence [J].Kidney Int,2019,96(3):572-580.
[7] TAN G S,CHAKRAVARTHY U,WONG T Y.Anti-VEGF therapy or vitrectomy surgery for vitreous hemorrhage from proliferative diabetic retinopathy [J].JAMA,2020,324(23):2375-2377.
[8] RADHAKRISHNAN R,KOWLURU R A.Long noncoding RNA MALAT1 and regulation of the antioxidant defense system in diabetic retinopathy [J].Diabetes,2021,70(1):227-239.
[9] MARTIJN J,VOSSEBERG J,GUY L,OFFRE P,ETTEMA T J.Deep mitochondrial origin outside the sampled alphaproteobacteria [J].Nature,2018,557(7703):101-105.
[10] KUMMER E,BAN N.Mechanisms and regulation of protein synthesis in mitochondria [J].Nat Rev Mol Cell Biol,2021,22(5):307-325.
[11] SPINELLI J B,HAIGIS M C.The multifaceted contributions of mitochondria to cellular metabolism [J].Nat Cell Biol,2018,20(7):745-754.
[12] SUN N,YOULE R J,FINKEL T.The mitochondrial basis of aging [J].Mol Cell,2016,61(5):654-666.
[13] GIACOMELLO M,PYAKUREL A,GLYTSOU C,SCORRANO L.The cell biology of mitochondrial membrane dynamics [J].Nat Rev Mol Cell Biol,2020,21(4):204-224.
[14] WU M Y,YIANG G T,LAI T T,LI C J.The oxidative stress and mitochondrial dysfunction during the pathogenesis of diabetic retinopathy [J].Oxid Med Cell Longev,2018,2018:3420187.
[15] KOWLURU R A,KOWLURU A,VELUTHAKAL R,MOHAMMAD G,SYED I,SANTOS J M,et al.TIAM1-RAC1 signalling axis-mediated activation of NADPH oxidase-2 initiates mitochondrial damage in the development of diabetic retinopathy [J].Diabetologia,2014,57(5):1047-1056.
[16] KOWLURU R A.Diabetic retinopathy and NADPH oxidase-2:a sweet slippery road [J].Antioxidants (Basel),2021,10(5):783.
[17] KOWLURU R A.Mitochondrial stability in diabetic retinopathy:Lessons learned from epigenetics [J].Diabetes,2019,68(2):241-247.
[18] LIU L,ZHANG K,SANDOVAL H,YAMAMOTO S,JAISWAL M,SANZ E,et al.Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration [J].Cell,2015,160(1-2):177-190.
[19] KOWLURU R A,KOWLURU A,MISHRA M,KUMAR B.Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy [J].Prog Retin Eye Res,2015,48:40-61.
[20] ZHONG Q,KOWLURU R A.Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy [J].Diabetes,2011,60(4):1304-1313.
[21] MISHRA M,KOWLURU R A.DNA methylation—a potential source of mitochondria DNA base mismatch in the development of diabetic retinopathy [J].Mol Neurobiol,2019,56(1):88-101.
[22] DINKOVA-KOSTOVA A T,ABRAMOV A Y.The emerging role of Nrf2 in mitochondrial function [J].Free Radic Biol Med,2015,88(Pt B):179-188.
[23] WANG J,SHANMUGAM A,MARKAND S,ZORRILLA E,GANAPATHY V,SMITH S B.Sigma 1 receptor regulates the oxidative stress response in primary retinal Müller glial cells via Nrf2 signaling and system xc(-),the Na(+)-independent glutamate-cystine exchanger [J].Free Radic Biol Med,2015,86:25-36.
[24] SAIDU N E B,KAVIAN N,LEROY K,JACOB C,NICCO C,BATTEUX F,et al.Dimethyl fumarate,a two-edged drug:current status and future directions [J].Med Res Rev,2019,39(5):1923-1952.
[25] MISHRA M,LILLVIS J,SEYOUM B,KOWLURU R A.Peripheral blood mitochondrial DNA damage as a potential noninvasive biomarker of diabetic retinopathy [J].Invest Ophthalmol Vis Sci,2016,57(10):4035-4044.
[26] ZHONG Q,KOWLURU R A.Diabetic retinopathy and damage to mitochondrial structure and transport machinery [J].Invest Ophthalmol Vis Sci,2011,52(12):8739-8746.
[27] KOWLURU R A,MISHRA M.Oxidative stress,mitochondrial damage and diabetic retinopathy [J].Biochim Biophys Acta,2015,1852(11):2474-2483.
[28] BONNANS C,CHOU J,WERB Z.Remodelling the extracellular matrix in development and disease [J].Nat Rev Mol Cell Biol,2014,15(12):786-801.
[29] KOWLURU R A,ZHONG Q,SANTOS J M.Matrix metalloproteinases in diabetic retinopathy:potential role of MMP-9 [J].Expert Opin Investig Drugs,2012,21(6):797-805.
[30] MOHAMMAD G,KOWLURU R A.Novel role of mitochondrial matrix metalloproteinase-2 in the development of diabetic retinopathy [J].Invest Ophthalmol Vis Sci,2011,52(6):3832-3841.
[31] ZHONG Q,KOWLURU R A.Regulation of matrix metalloproteinase-9 by epigenetic modifications and the development of diabetic retinopathy [J].Diabetes,2013,62(7):2559-2568.
[32] KOWLURU R A,MOHAMMAD G,DOS SANTOS J M,ZHONG Q.Abrogation of MMP-9 gene protects against the development of retinopathy in diabetic mice by preventing mitochondrial damage [J].Diabetes,2011,60(11):3023-3033.
[33] KOWLURU R A,SANTOS J M,ZHONG Q.Sirt1,a negative regulator of matrix metalloproteinase-9 in diabetic retinopathy [J].Invest Ophthalmol Vis Sci,2014,55(9):5653-5660.
[34] HAIDER S Z,SADANANDAN N P,JOSHI P G,MEHTA B.Early diabetes induces changes in mitochondrial physiology of inner retinal neurons [J].Neuroscience,2019,406:140-149.
[35] DE STEFANI D,RIZZUTO R,POZZAN T.Enjoy the trip:calcium in mitochondria back and forth [J].Annu Rev Biochem,2016,85:161-192.
[36] DORN G W,KITSIS R N.The mitochondrial dynamism-mitophagy-cell death interactome:multiple roles performed by members of a mitochondrial molecular ensemble [J].Circ Res,2015,116(1):167-182.
[37] RAMREZ S,GMEZ-VALADS A G,SCHNEEBERGER M,VARELA L,HADDAD-TVOLLI R,ALTIRRIBA J,et al.Mitochondrial dynamics mediated by mitofusin 1 is required for POMC neuron glucose-sensing and insulin release control [J].Cell Metab,2017,25(6):1390-1399.e6.
[38] DURAISAMY A J,MOHAMMAD G,KOWLURU R A.Mitochondrial fusion and maintenance of mitochondrial homeostasis in diabetic retinopathy [J].Biochim Biophys Acta Mol Basis Dis,2019,1865(6):1617-1626.
[39] PEREIRA R O,TADINADA S M,ZASADNY F M,OLIVEIRA K J,PIRES K,OLVERA A,et al.OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance [J]. EMBO J,2017,36(14):2126-2145.
[40] KIM D,ROY S.Effects of diabetes on mitochondrial morphology and its implications in diabetic retinopathy [J].Invest Ophthalmol Vis Sci,2020,61(10):10.
[41] KIM D,VOTRUBA M,ROY S.Opa1 deficiency promotes development of retinal vascular lesions in diabetic retinopathy[J].Int J Mol Sci,2021,22(11):5928.
[42] CORRADO M,SAMARDI C'D,GIACOMELLO M,RANA N,PEARCE E L,SCORRANO L.Deletion of the mitochondria-shaping protein Opa1 during early thymocyte maturation impacts mature memory T cell metabolism [J].Cell Death Differ,2021,28(7):2194-2206.
[43] KASAHARA A,SCORRANO L.Mitochondria:from cell death executioners to regulators of cell differentiation [J].Trends Cell Biol,2014,24(12):761-770.
[44] KIM D,SANKARAMOORTHY A,ROY S.Downregulation of Drp1 and Fis1 inhibits mitochondrial fission and prevents high glucose-induced apoptosis in retinal endothelial cells [J].Cells,2020,9(7):1662.
[45] KIM D,SESAKI H,ROY S.Reduced levels of Drp1 protect against development of retinal vascular lesions in diabetic retinopathy [J].Cells,2021,10(6):1379.
[46] TEWARI S,SANTOS J M,KOWLURU R A.Damaged mitochondrial DNA replication system and the development of diabetic retinopathy [J].Antioxid Redox Signal,2012,17(3):492-504.
[47] KAZAK L,REYES A,HOLT I J.Minimizing the damage:repair pathways keep mitochondrial DNA intact [J].Nat Rev Mol Cell Biol,2012,13(10):659-671.
[48] MISHRA M,KOWLURU R A.Retinal mitochondrial DNA mismatch repair in the development of diabetic retinopathy,and its continued progression after termination of hyperglycemia [J].Invest Ophthalmol Vis Sci,2014,55(10):6960-6967.
[49] AIELLO L P,DCCT/EDIC RESEARCH GROUP.Diabetic retinopathy and other ocular findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study [J].Diabetes Care,2014,37(1):17-23.
[50] CHEN Z,MIAO F,PATERSON A D,LACHIN J M,ZHANG L,SCHONES D E,et al.Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort [J].Proc Natl Acad Sci U S A,2016,113(21):E3002-E3011.
[51] GARCA-QUINTANS N,SNCHEZ-RAMOS C,PRIETO I,TIERREZ A,ARZA E,ALFRANCA A,et al.Oxidative stress induces loss of pericyte coverage and vascular instability in PGC-1α-deficient mice [J].Angiogenesis,2016,19(2):217-228.
[52] SANTOS J M,TEWARI S,GOLDBERG A F,KOWLURU R A.Mitochondrial biogenesis and the development of diabetic retinopathy [J].Free Radic Biol Med,2011,51(10):1849-1860.
[53] ZHANG C S,LIN S C.AMPK promotes autophagy by facilitating mitochondrial fission [J].Cell Metab,2016,23(3):399-401.
[54] PIANO I,NOVELLI E,DELLA SANTINA L,STRETTOI E,CERVETTO L,GARGINI C.Involvement of autophagic pathway in the progression of retinal degeneration in a mouse model of diabetes [J].Front Cell Neurosci,2016,10:42.
[55] SONG S,BAO S,ZHANG C,ZHANG J,LV J,LI X,et al.Stimulation of AMPK prevents diabetes-induced photoreceptor cell degeneration [J].Oxid Med Cell Longev,2021,2021:5587340.
[56] TOYAMA E Q,HERZIG S,COURCHET J,LEWIS T L Jr,LOSN O C,HELLBERG K,et al.Metabolism.AMP-activated protein kinase mediates mitochondrial fission in response to energy stress [J].Science,2016,351(6270):275-281.
[57] LI J,YU S,YING J,SHI T,WANG P.Resveratrol prevents ROS-induced apoptosis in high glucose-treated retinal capillary endothelial cells via the activation of AMPK/Sirt1/PGC-1 α pathway [J].Oxid Med Cell Longev,2017,2017:7584691.
[58] LIN W J,KUANG H Y.Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells [J].Autophagy,2014,10(10):1692-1701.

相似文献/References:

[1]杜玮 刘子扬 周艳艳 雒雷鸣.糖尿病视网膜病变与血清胆红素水平的关系[J].眼科新进展,2012,32(5):000.
[2]范松涛 卢建民.阿司匹林与糖尿病患者玻璃体出血以及玻璃体切割术疗效的相关性研究[J].眼科新进展,2012,32(11):000.
[3]李艳 李筱荣 袁佳琴 潘斌.糖尿病大鼠视网膜中VEGF、PEDF的表达与血-视网膜屏障损伤[J].眼科新进展,2013,33(1):000.
[4]李朝晖 崔治华 胡晓英 孟丽珠 张敬维.糖尿病视网膜病变激光面积与疗效的分析[J].眼科新进展,2013,33(2):000.
[5]冯冬梅 朱鸿 施彩虹.CXC趋化因子及其受体在糖尿病视网膜病变中的作用[J].眼科新进展,2013,33(6):000.
[6]牛淑玲.糖尿病视网膜病变患者HbAlc、FPG与血小板参数的变化及危险因素分析[J].眼科新进展,2013,33(7):000.
[7]毕春潮 王睿 王建洲 雷春灵 董晓娟 王小莉 薛晓辉.Ad-PEDF对糖尿病视网膜病变大鼠视网膜新生血管的抑制作用[J].眼科新进展,2013,33(8):000.
[8]杨萍 孙书明 李晓鹏.辛伐他汀对糖尿病视网膜病变和炎症因子的影响[J].眼科新进展,2013,33(8):000.
[9]罗文婷 孙大卫.血管黏附蛋白-1在眼科疾病中的研究进展[J].眼科新进展,2013,33(8):000.
[10]李小璐 马雅玲.糖尿病视网膜病变大鼠视网膜VEGF和PEDF的动态表达[J].眼科新进展,2013,33(9):000.
[11]温艳君,张雪蕊,韦严,等.高糖环境下Ndufa4线粒体复合体相关蛋白2(Ndufa4l2)对小鼠视网膜感光细胞661W的影响[J].眼科新进展,2022,42(4):262.[doi:10.13389/j.cnki.rao.2022.0053]
 WEN Yanjun,ZHANG Xuerui,WEI Yan,et al.Effects of Ndufa4 mitochondrial complex associated like 2 on 661W cells exposed to high glucose[J].Recent Advances in Ophthalmology,2022,42(12):262.[doi:10.13389/j.cnki.rao.2022.0053]
[12]张媛媛,李筱荣,邵彦.糖尿病视网膜病变“代谢记忆”与线粒体功能相关性研究进展[J].眼科新进展,2023,43(12):1005.[doi:10.13389/j.cnki.rao.2023.0200]
 ZHANG Yuanyuan,LI Xiaorong,SHAO Yan.Research progress on the correlation between metabolic memory and mitochondrial function in diabetic retinopathy[J].Recent Advances in Ophthalmology,2023,43(12):1005.[doi:10.13389/j.cnki.rao.2023.0200]

备注/Memo

备注/Memo:
江苏省自然科学基金(编号:BK20200163);2020年度“太湖人才计划”顶尖医学专家团队(编号:2020-THRCTD-1);江苏省科教强卫重点学科项目(编号:ZDXKC2016008)
更新日期/Last Update: 2022-12-05