[1]赵雅,马严,姚牧笛,等.表观遗传修饰对视网膜神经退行性疾病的调控作用研究进展[J].眼科新进展,2022,42(7):551-556.[doi:10.13389/j.cnki.rao.2022.0113]
 ZHAO Ya,MA Yan,YAO Mudi,et al.Advances in epigenetic modification and its regulation in retinal neurodegenerative diseases[J].Recent Advances in Ophthalmology,2022,42(7):551-556.[doi:10.13389/j.cnki.rao.2022.0113]
点击复制

表观遗传修饰对视网膜神经退行性疾病的调控作用研究进展/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
42卷
期数:
2022年7期
页码:
551-556
栏目:
文献综述
出版日期:
2022-07-05

文章信息/Info

Title:
Advances in epigenetic modification and its regulation in retinal neurodegenerative diseases
作者:
赵雅马严姚牧笛蒋沁曹国凡
210029 江苏省南京市,南京医科大学附属眼科医院(赵雅,马严,姚牧笛,蒋沁,曹国凡),210029 江苏省南京市,南京医科大学第四临床医学院(赵雅,马严)
Author(s):
ZHAO Ya12MA Yan12YAO Mudi123JIANG Qin1CAO Guofan1
1.The Affiliated Eye Hospital,Nanjing Medical University,Nanjing 210029,Jiangsu Province,China
2.The Fourth School of Clinical Medicine,Nanjing Medical University,Nanjing 210029,Jiangsu Province,China
3.Eye Institute,Eye & ENT Hospital,Shanghai
关键词:
视网膜神经退行性疾病表观遗传修饰DNA甲基化RNA甲基化组蛋白修饰非编码RNA表观遗传疗法
Keywords:
retinal neurodegenerative disease epigenetic modification DNA methylation RNA methylation histone modification non-coding RNA epigenetic therapeutics
分类号:
R774.1,R775.2
DOI:
10.13389/j.cnki.rao.2022.0113
文献标志码:
A
摘要:
视网膜神经退行性疾病是由多种致病因素引起的视网膜各级神经元变性死亡,功能减弱或丧失的一类疾病,是导致视力下降和失明的最常见原因,目前尚无治愈方法。近年来,越来越多的研究表明,表观遗传修饰可在不改变DNA序列的前提下,通过DNA甲基化、RNA甲基化、组蛋白修饰和非编码RNA调控等形式调节视网膜神经元相关基因的表达来参与疾病的发生发展。干预基因组的表观遗传谱在疾病的治疗上表现出良好的前景。本文就表观遗传修饰在视网膜神经退行性疾病中的调控作用以及视网膜神经退行性疾病表观遗传疗法进行综述。
Abstract:
Retinal neurodegenerative disease (RND), a leading cause of irreversible visual loss and blindness, is a multifactorial disorder characterized by degeneration, hypofunction or afunction of retinal neurons. Currently, there is no treatment demonstrated to cure it. In recent years, accumulating evidence has indicated that epigenetic modifications regulate the gene expression of retinal neurons and pathogenesis of RND through deoxyribonucleic acid (DNA) methylation, ribonucleic acid (RNA) methylation, histone modification, and non-coding RNA regulation without alterations in the DNA sequences. Epigenetic modifications of genomes hold therapeutic promise in treating RND. This paper mainly discusses the regulatory mechanism and therapeutic potential of epigenetic modifications on RND.

参考文献/References:

[1] CUENCA N,FERNANDEZ-SANCHEZ L,CAMPELLO L,MANEU V,DE LA VILLA P,LAX P,et al.Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases[J].Prog Retin Eye Res,2014,43:17-75.
[2] CORSO-DIAZ X,JAEGER C,CHAITANKAR V,SWAROOP A.Epigenetic control of gene regulation during development and disease:a view from the retina[J].Prog Retin Eye Res,2018,65:1-27.
[3] LI X,HE S,ZHAO M.An updated review of the epigenetic mechanism underlying the pathogenesis of age-related macular degeneration[J].Aging Dis,2020,11(5):1219-1234.
[4] GUJAR H,WEISENBERGER D J,LIANG G.The roles of human DNA methyltransferases and their isoforms in shaping the epigenome[J].Genes (Basel),2019,10(2):172.
[5] SINGH R K,MALLELA R K,HAYES A,DUNHAM N R,HEDDEN M E,ENKE R A,et al.Dnmt1,Dnmt3a and Dnmt3b cooperate in photoreceptor and outer plexiform layer development in the mammalian retina[J].Exp Eye Res,2017,159:132-146.
[6] DVORIANTCHIKOVA G,SEEMUNGAL R J,IVANOV D.DNA methylation dynamics during the differentiation of retinal progenitor cells into retinal neurons reveal a role for the DNA demethylation pathway[J].Front Mol Neurosci,2019,12:182.
[7] SERITRAKUL P,GROSS J M.Tet-mediated DNA hydroxymethylation regulates retinal neurogenesis by modulating cell-extrinsic signaling pathways[J].PLoS Genet,2017,13(9):e1006987.
[8] 袁满,金玮,郝昕蕾,杨安怀.糖尿病视网膜病变神经血管损伤发病机制的研究进展[J].眼科新进展,2020,40(9):885-888.
YUAN M,JIN W,HAO X L,YANG H A.Research advances in the pathogenesis of neurovascular injury in diabetic retinopathy[J].Rec Adv Ophthalmol,2020,40(9):885-888.
[9] DURAISAMY A J,MISHRA M,KOWLURU A,KOWLURU R A.Epigenetics and regulation of oxidative stress in diabetic retinopathy[J].Invest Ophthalmol Vis Sci,2018,59(12):4831-4840.
[10] KOWLURU R A,MOHAMMAD G.Epigenetics and mitochondrial stability in the metabolic memory phenomenon associated with continued progression of diabetic retinopathy[J].Sci Rep,2020,10(1):6655.
[11] MAGHBOOLI Z,HOSSEIN-NEZHAD A,LARIJANI B,AMINI M,KESHTKAR A.Global DNA methylation as a possible biomarker for diabetic retinopathy[J].Diabetes Metab Res Rev,2015,31(2):183-189.
[12] AGARDH E,LUNDSTIG A,PERFILYEV A,VOLKOV P,FREIBURGHAUS T,LINDHOLM E,et al.Genome-wide analysis of DNA methylation in subjects with type 1 diabetes identifies epigenetic modifications associated with proliferative diabetic retinopathy[J].BMC Med,2015,13:182.
[13] MCDONNELL F,IRNATEN M,CLARK A F,O’BRIEN C J,WALLACE D M.Hypoxia-induced changes in DNA methylation alter RASAL1 and TGF-β1 expression in human trabecular meshwork cells[J].PLoS One,2016,11(4):e0153354.
[14] WAN P,LONG E,LI Z,ZHU Y,SU W,ZHUO Y.TET-dependent GDF7 hypomethylation impairs aqueous humor outflow and serves as a potential therapeutic target in glaucoma[J].Mol Ther,2021,29(4):1639-1657.
[15] FARINELLI P,PERERA A,ARANGO-GONZALEZ B,TRIFUNOVIC D,WAGNER M,CARELL T,et al.DNA methylation and differential gene regulation in photoreceptor cell death[J].Cell Death Dis,2014,5(12):e1558.
[16] WAHLIN K J,ENKE R A,FULLER J A,KALESNYKAS G,ZACK D J,MERBS S L.Epigenetics and cell death:DNA hypermethylation in programmed retinal cell death[J].PLoS One,2013,8(11):e79140.
[17] YANG Y,HSU P J,CHEN Y S,YANG Y G.Dynamic transcriptomic m6A decoration:writers,erasers,readers and functions in RNA metabolism[J].Cell Res,2018,28(6):616-624.
[18] YOON K J,RINGELING F R,VISSERS C,JACOB F,POKRASS M,JIMENEZ-CYRUS D,et al.Temporal control of mammalian cortical neurogenesis by m6A methylation[J].Cell,2017,171(4):877-89.e17.
[19] WENG Y L,WANG X,AN R,CASSIN J,VISSERS C,LIU Y,et al.Epitranscriptomic m6A regulation of axon regeneration in the adult mammalian nervous system[J].Neuron,2018,97(2):313-325.e6.
[20] ZHONG Q,GUO J,CHEN S.Spatio-temporal expression profile of mettl3/mettl14 during mouse retina development[J].Int J Morphol,2020,38(6):1668-1675.
[21] QU X,ZHU K,LI Z,ZHANG D,HOU L.The alteration of m6A-tagged transcript profiles in the retina of rats after traumatic optic neuropathy[J].Front Genet,2021,12:628841.
[22] BANNISTER A J,KOUZARIDES T.Regulation of chromatin by histone modifications[J].Cell Res,2011,21:381-395.
[23] RICHTER-LANDSBERG C,LEYK J.Inclusion body formation,macroautophagy,and the role of HDAC6 in neurodegeneration[J].Acta Neuropathol,2013,126(6):793-807.
[24] ZORRILLA-ZUBILETE M A,YESTE A,QUINTANA F J,TOIBER D,MOSTOSLAVSKY R,SILBERMAN D M.Epigenetic control of early neurodegenerative events in diabetic retinopathy by the histone deacetylase SIRT6[J].J Neurochem,2018,144(2):128-138.
[25] WANG W,WANG Q,WAN D,SUN Y,WANG L,CHEN H,et al.Histone HIST1H1C/H1.2 regulates autophagy in the development of diabetic retinopathy[J].Autophagy,2017,13(5):941-954.
[26] ZUO L,KHAN R S,LEE V,DINE K,WU W,SHINDLER K S.SIRT1 promotes RGC survival and delays loss of function following optic nerve crush[J].Invest Ophthalmol Vis Sci,2013,54(7):5097-5102.
[27] SCHMITT H M,PELZEL H R,SCHLAMP C L,NICKELLS R W.Histone deacetylase 3 (HDAC3) plays an important role in retinal ganglion cell death after acute optic nerve injury[J].Mol Neurodegener,2014,9:39.
[28] LEBRUN-JULIEN F,SUTER U.Combined HDAC1 and HDAC2 depletion promotes retinal ganglion cell survival after injury through reduction of p53 target gene expression[J].ASN Neuro,2015,7(3):1759091415593066.
[29] SCHMITT H M,GROSSER J A,SCHLAMP C L,NICKELLS R W.Targeting HDAC3 in the DBA/2J spontaneous mouse model of glaucoma[J].Exp Eye Res,2020,200:108244.
[30] CHAN J J,TAY Y.Noncoding RNA:RNA regulatory networks in cancer[J].Int J Mol Sci,2018,19(5):1310.
[31] ZHANG X,YANG Y,FENG Z.Suppression of microRNA-495 alleviates high-glucose-induced retinal ganglion cell apoptosis by regulating Notch/PTEN/Akt signaling[J].Biomed Pharmacother,2018,106:923-929.
[32] ZHANG Q L,WANG W,ALATANTUYA,DONGMEI,LU Z J,LI L L,et al.Corrigendum to “Down-regulated miR-187 promotes oxidative stress-induced retinal cell apoptosis through P2X7 receptor”[J].Int J Biol Macromol,2018,120(Pt A):801-810.
[33] LI R,JIN Y,LI Q,SUN X,ZHU H,CUI H.MiR-93-5p targeting PTEN regulates the NMDA-induced autophagy of retinal ganglion cells via AKT/mTOR pathway in glaucoma[J].Biomed Pharmacother,2018,100:1-7.
[34] PENG H,SUN Y B,HAO J L,LU C W,BI M C,SONG E.Neuroprotective effects of overexpressed microRNA-200a on activation of glaucoma-related retinal glial cells and apoptosis of ganglion cells via downregulating FGF7-mediated MAPK signaling pathway[J].Cell Signal,2019,54:179-190.
[35] ZHANG L Q,CUI H,YU Y B,SHI H Q,ZHOU Y,LIU M J.MicroRNA-141-3p inhibits retinal neovascularization and retinal ganglion cell apoptosis in glaucoma mice through the inactivation of docking protein 5-dependent mitogen-activated protein kinase signaling pathway[J].J Cell Physiol,2019,234(6):8873-8887.
[36] YANG J,WANG N,LUO X.Intraocular miR-211 exacerbates pressure-induced cell death in retinal ganglion cells via direct repression of FRS2 signaling[J].Biochem Biophys Res Commun,2018,503(4):2984-2992.
[37] NIE X G,FAN D S,HUANG Y X,HE Y Y,DONG B L,GAO F.Downregulation of microRNA-149 in retinal ganglion cells suppresses apoptosis through activation of the PI3K/Akt signaling pathway in mice with glaucoma[J].Am J Physiol Cell Physiol,2018,315(6):C839-849.
[38] CHU-TAN J A,RUTAR M,SAXENA K,AGGIO-BRUCE R,ESSEX R W,VALTER K,et al.MicroRNA-124 dysregulation is associated with retinal inflammation and photoreceptor death in the degenerating retina[J].Invest Ophthalmol Vis Sci,2018,59(10):4094-4105.
[39] ROMANO G L,PLATANIA C B M,DRAGO F,SALOMONE S,RAGUSA M,BARBAGALLO C,et al.Retinal and circulating miRNAs in age-related macular degeneration:an in vivo animal and human study[J].Front Pharmacol,2017,8:168.
[40] PALFI A,HOKAMP K,HAUCK S M,VENCKEN S,MILLINGTON-WARD S,CHADDERTON N,et al.MicroRNA regulatory circuits in a mouse model of inherited retinal degeneration[J].Sci Rep,2016,6:31431.
[41] BARBATO S,MARROCCO E,INTARTAGLIA D,PIZZO M,ASTERITI S,NASO F,et al.MiR-211 is essential for adult cone photoreceptor maintenance and visual function[J].Sci Rep,2017,7(1):17004.
[42] ANASAGASTI A,LARA-LOPEZ A,MILLA-NAVARRO S,ESCUDERO-ARRARAS L,RODRIGUEZ-HIDALGO M,ZABALETA N,et al.Inhibition of microRNA 6937 delays photoreceptor and vision loss in a mouse model of retinitis pigmentosa[J].Pharmaceutics,2020,12(10):913.
[43] CARRELLA S,MASSA F,INDRIERI A.The role of microRNAs in mitochondria-mediated eye diseases[J].Front Cell Dev Biol,2021,9:653522.
[44] YAN B,TAO Z F,LI X M,ZHANG H,YAO J,JIANG Q.Aberrant expression of long noncoding RNAs in early diabetic retinopathy[J].Invest Ophthalmol Vis Sci,2014,55(2):941-951.
[45] LI C P,WANG S H,WANG W Q,SONG S G,LIU X M.Long noncoding RNA-Sox2OT knockdown alleviates diabetes mellitus-induced retinal ganglion cell (RGC) injury[J].Cell Mol Neurobiol,2017,37(2):361-369.
[46] LIU C,LI C P,WANG J J,SHAN K,LIU X,YAN B.RNCR3 knockdown inhibits diabetes mellitus-induced retinal reactive gliosis[J].Biochem Biophys Res Commun,2016,479(2):198-203.
[47] LI X J.Long non-coding RNA nuclear paraspeckle assembly transcript 1 inhibits the apoptosis of retina Müller cells after diabetic retinopathy through regulating miR-497/brain-derived neurotrophic factor axis[J].Diab Vasc Dis Res,2018,15(3):204-213.
[48] YAO J,WANG X Q,LI Y J,SHAN K,YANG H,WANG Y N,et al.Long non-coding RNA MALAT1 regulates retinal neurodegeneration through CREB signaling[J].EMBO Mol Med,2016,8(4):346-362.
[49] WIGGS J L,YASPAN B L,HAUSER M A,KANG J H,ALLINGHAM R R,OLSON L M,et al.Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma[J].PLoS Genet,2012,8(4):e1002654.
[50] ZHENG M,ZHENG Y,GAO M,MA H,ZHANG X,LI Y,et al.Expression and clinical value of lncRNA MALAT1 and lncRNA ANRIL in glaucoma patients[J].Exp Ther Med,2020,19(2):1329-1335.
[51] WANG J J,LIU C,SHAN K,LIU B H,LI X M,ZHANG S J,et al.Circular RNA-ZNF609 regulates retinal neurodegeneration by acting as miR-615 sponge[J].Theranostics,2018,8(12):3408-3415.
[52] WANG J J,SHAN K,LIU B H,LIU C,ZHOU R M,LI X M,et al.Targeting circular RNA-ZRANB1 for therapeutic intervention in retinal neurodegeneration[J].Cell Death Dis,2018,9(5):540.
[53] CHEN X,ZHOU R,SHAN K,SUN Y,YAN B,SUN X,et al.Circular RNA expression profiling identifies glaucoma-related circular RNAs in various chronic ocular hypertension rat models[J].Front Genet,2020,11:556712.
[54] MISHRA M,KOWLURU R A.The role of DNA methylation in the metabolic memory phenomenon associated with the continued progression of diabetic retinopathy[J].Invest Ophthalmol Vis Sci,2016,57(13):5748-5757.
[55] LU Y,BROMMER B,TIAN X,KRISHNAN A,MEER M,WANG C,et al.Reprogramming to recover youthful epigenetic information and restore vision[J].Nature,2020,588(7836):124-129.
[56] LIU S Y,SONG J Y,FAN B,WANG Y,PAN Y R,CHE L,et al.Resveratrol protects photoreceptors by blocking caspase- and PARP-dependent cell death pathways[J].Free Radic Biol Med,2018,129:569-581.
[57] JORSTAD N L,WILKEN M S,GRIMES W N,WOHL S G,VANDENBOSCH L S,YOSHIMATSU T,et al.Stimulation of functional neuronal regeneration from Müller glia in adult mice[J].Nature,2017,548(7665):103-107.
[58] KORIYAMA Y,SUGITANI K,OGAI K,KATO S.Heat shock protein 70 induction by valproic acid delays photoreceptor cell death by N-methyl-N-nitrosourea in mice[J].J Neurochem,2014,130(5):707-719.
[59] 许从飞,王均.非编码RNA药物的研究进展[J].生命科学,2018,30(2):213-221.
XU C F,WANG J.Advances in non-coding RNA therapeutics [J].Chin Bull Life Sci,2018,30(2):213-221.

相似文献/References:

[1]张凤俊,李晶明,刘秋平.糖尿病视网膜病变发病机制及潜在治疗研究进展[J].眼科新进展,2020,40(7):677.[doi:10.13389/j.cnki.rao.2020.0156]
 ZHANG Fengjun,LI Jingming,LIU Qiuping.Pathogenesis and potential treatment of diabetic retinopathy[J].Recent Advances in Ophthalmology,2020,40(7):677.[doi:10.13389/j.cnki.rao.2020.0156]

备注/Memo

备注/Memo:
国家自然科学基金资助(编号:81870679);江苏省卫生健康委医学科研项目(编号:114)
更新日期/Last Update: 2022-07-05