[1]宋爱萍,于涛,卓建,等.近视患者黄斑区视网膜多焦视网膜电图和光学相干断层扫描的评估和分析[J].眼科新进展,2019,39(3):255-259.[doi:10.13389/j.cnki.rao.2019.0057]
 SONG Ai-Ping,YU Tao,ZHUO Jian,et al.Evaluation and analysis of macular retina by multifocal electroretinogram and optical coherence tomography in myopia[J].Recent Advances in Ophthalmology,2019,39(3):255-259.[doi:10.13389/j.cnki.rao.2019.0057]
点击复制

近视患者黄斑区视网膜多焦视网膜电图和光学相干断层扫描的评估和分析/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
39卷
期数:
2019年3期
页码:
255-259
栏目:
应用研究
出版日期:
2019-03-05

文章信息/Info

Title:
Evaluation and analysis of macular retina by multifocal electroretinogram and optical coherence tomography in myopia
作者:
宋爱萍于涛卓建曲鹏
250000 山东省济南市,山东省千佛山医院眼科
Author(s):
SONG Ai-PingYU TaoZHUO JianQU Peng
Department of Ophthalmology,Shandong Provincial Qianfoshan Hospital,Jinan 250000,Shandong Province,China
关键词:
多焦视网膜电图光学相干断层扫描近视黄斑
Keywords:
multifocal electroretinogramoptical coherence tomographymyopiamacula
分类号:
R778.1
DOI:
10.13389/j.cnki.rao.2019.0057
文献标志码:
A
摘要:
目的 使用多焦视网膜电图和光学相干断层扫描对近视患者黄斑区视网膜进行评估和分析。方法 符合入选条件的113例113眼,根据屈光度数和眼轴长度分为四组:正视组31例(31眼),等效球镜度数为+0.75~-0.50 D,且眼轴长度为22~24 mm;低中度近视组26例(26眼),等效球镜度数为>-0.50~-6.00 D,且眼轴长度为>24~26 mm;高度近视组34例(34眼),等效球镜度数为>-6.00~-10.00 D,且眼轴长度为>26~28 mm;超高度近视组22例(22眼),等效球镜度数>-10.00 D,且眼轴长度>28 mm。使用多焦视网膜电图和光学相干断层扫描对入选患者黄斑区视网膜功能和厚度进行测量。结果 随着近视程度的增加,各环P1波反应密度值逐渐减小,1环、2环、3环不同程度近视组间P1波反应密度差异均有统计学意义(均为P=0.00)。随着近视程度的增加,各环P1波振幅总和均逐渐减小,1~5环不同程度近视组间P1波振幅总和差异均有统计学意义(均为P=0.00)。随着近视程度的增加,P1波潜伏期逐渐延长,1环、2环、3环不同程度近视组间P1波潜伏期差异均有统计学意义(均为P=0.00)。随着近视程度的增加,黄斑中心凹视网膜厚度增加(P<0.001)。黄斑中心凹视网膜厚度与P1波反应密度呈负相关(r=-0.261,P=0.003),与P1波振幅总和呈负相关(r=-0.402,P<0.001),与P1波潜伏期呈正相关(r=0.340,P<0.001)。结论 随着近视程度的增加,黄斑中心凹视网膜厚度增加,视网膜功能下降。
Abstract:
Objective To investigate the changes of macular retinal function and structure in myopic subjects using multifocal electroretinography (mfERG) and optical coherence tomography (OCT).Methods One hundred and thirteen subjects (113 eyes) with age ranging from 18 to 35 years old were enrolled in the study.The subjects were divided into four groups according to spherical equivalent (SE) and axial length (AL):emmetropia (E) group (n=31;SE:+0.75 to -0.50 D;AL:22 to 24 mm),low and medium myopia (LMM) group (n=26;SE:>-0.50 to -6.00 D;AL:>24 to 26 mm),high myopia (HM) group (n=34;SE:>-6.00 to -10.00 D;AL:>26 to 28 mm) and super high myopia (SHM) group (n=22;SE:>-10.00 D;AL:=28 mm).The changes of macular retinal function and the central subfield macular thickness (CST) were obtained using mfERG and OCT.Results As the degree of myopia increased,the average response density values of the P1 waves of each ring gradually decreased.The differences of the mean response density values of P1 waves of 1-3 ring among different groups were significantly different (all P<0.01).As the degree of myopia increased,the amplitudes of the P1 waves of each ring gradually decreased.The differences of the amplitudes of P1 waves of 1-5 ring among different groups were significantly different (all P<0.01).As the degree of myopia increased,the latency of the P1 wave was gradually increased.The differences of the latencies of P1 waves of 1-3 ring among different groups were significantly different (all P<0.01).As the degree of myopia increased,the CST increased (P<0.001).The CST was negatively correlated with the average response density and the sum amplitude of the P1 wave of 1 ring (r=-0.261,-0.402;P=0.003,P<0.001),and positively correlated with the P1 wave latency (r=0.340,P<0.001).Conclusion As the degree of myopia increases,the CST increases and the function of the retina declines.

参考文献/References:

[1] HE M,ZHENG Y,XIANG F.Prevalence of myopia in urban and rural children in mainland China[J].Optom Vis Sci,2009,86(1):40-44.
[2] LOW W,DIRANI M,GAZZARD G,CHAN Y H,ZHOU H J,SELVARAJ P,et al.Family history,near work,outdoor activity,and myopia in Singapore Chinese preschool children[J].Br J Ophthalmol,2010,94(8):1012-1016.
[3] PAN C W,ZHENG Y F,ANUAR A R,CHEW M,GAZZARD G,AUNG T,et al.Prevalence of refractive errors in a multiethnic Asian population:the Singapore epidemiology of eye disease study[J].Invest Ophthalmol Vis Sci,2013,54(4):2590-2598.
[4] ATCHISON D A,JONES C E,SCHMID K L,PRITCHARD N,POPE J M,STRUGNELL W E,et al.Eye shape in emmetropia and myopia[J].Invest Ophthalmol Vis Sci,2004,45(10):3380-3386.
[5] CHENG S C,LAM C S,YAP M K.Retinal thickness in myopic and non-myopic eyes[J].Ophthalmic Physiol Opt,2010,30(6):776-784.
[6] ABBOTT C J,GRUNERT U,PIANTA M J,MCBRIEN N A.Retinal thinning in tree shrews with induced high myopia:optical coherence tomography and histological assessment[J].Vision Res,2011,51(3):376-385.
[7] WOLSLEY C J,SAUNDERS K J,SILVESTRI G,AUDERSON R S.Investigation of changes in the myopic retina using multifocal electroretinograms,optical coherence tomography and peripheral resolution acuity[J].Vision Res,2008,48(14):1554-1561.
[8] FORTUNE B,JOHNSON C A.Decline of photopic multifocal electroretinogram responses with age is due primarily to preretinal optical factors[J].J Opt Soc Am A Opt Image Sci Vis,2002,19(1):173-184.
[9] SUN X Y,LI J J,WANG Y,XU L.The effects of myopia on first-order kernels responses of multifocal electroretinogram[J].Chin J Ocul Fundus Dis,2006,22(2):103-105.
[10] LUU C D,LAU A M,LEE S Y.Multifocal electroretinogram in adults and children with myopia[J].Arch Ophthalmol,2006,124(3):328-334.
[11] LANGROVA H,ZRENNER E,KURTENBACH A,SEELIGER M W.Age-related changes in retinal function tomography[J].Invest Ophthalmol Vis Sci,2008,49(11):5024-5032.
[12] ANZAI K,MORI K,OTA M,MURAYAMA K,YONEYA S.Aging of macular function as seen in multifocal electroretinograms[J].Nippon Ganka Gakkai Zasshi,1998,102(1):49-53.
[13] WU D Z,LIANG J,MA J.The characteristics of multifocal electroretinogram in normal subjects in China[J].Chin J Ophthalmol,2001,37(2):98-103.
[14] LIANG H,CREWTHER D P,CREWTHER S G,BARILA A M.A role for photoreceptor outer segments in the induction of deprivation myopia[J].Vision Res,1995,35(9):1217-1225.
[15] LI K Y,TIRUVEEDHULA P,ROORDA A.Intersubject variability of foveal cone photoreceptor density in relation to eye length[J].Invest Ophthalmol Vis Sci,2010,51(12):6858-6867.
[16] PARK S,KIM S H,PARK T K,OHN Y H.Evaluation of structual and functional changes in non-pathological myopic fundus using multifocal electroretinogram and optical coherence tomography[J].Doc Ophthalmol,2013,126(3):199-210.
[17] AZAD R,GHATAK U,SHARMA Y R,CHANDRA P.Multifocal electroretinogram in normal emmetropic subjects:correlation with optical coherence tomography[J].Indian J Ophthalmol,2012,60(1):49-52.
[18] PALLIN O.Influence of axial length of the eye on the size of the recorded b-potential in the clinical single-flash electroretinogram[J].Acta Ophthalmol,1969,47(Suppl):1-57.
[19] DOSLAK M J.A theoretical study of the effect of silicone oil on the electroretinogram[J].Invest Ophthalmol Vis Sci,1988,29(12):1881-1884.
[20] CHEN J F,ELSNER A E,BURNS S A,HANSEN R M,LOU P L,KWONG K K,et al.The effect of eye shape on retinal responses[J].Clin Vis Sci,1992,7(6):521-530.
[21] ROHRER B,SPIRA A W,STELL W K.Apomorphine blocks form-deprivation myopiain chickens by a dopamine D2-receptor mechanism acting in retina or pigmented epithelium[J].Vis Neurosci,1993,10(3):447-453.
[22] MORGAN I G.The biological basis of myopic refractive error[J].Clin Exp Optom,2003,86(5):276-288.
[23] WALLMAN J,WINAWER J.Homeostasis of eye growth and the question of myopia[J].Neuron,2004,43(4):447-468.
[24] STONE R A,LIN T,LATIES A M,IUVONE P M.Retinal dopamine and form-deprivation myopia[J].Proc Natl Acad Sci USA,1989,86(2):704-706.
[25] SCHMID K L,WILDSOET C F.Inhibitory effects of apomorphine and atropine and their combination on myopia in chicks[J].Optom Vis Sci,2004,81(2):137-147.
[26] WITKOVSKY P.Dopamine and retinal function[J].Doc Ophthalmol,2004,108(1):17-40.

相似文献/References:

[1]陈晓 李舒茵 牛超 李建新 陈慷.先天性视网膜劈裂症的影像学观察[J].眼科新进展,2012,32(11):000.
[2]闵红波 刘小红 花雷 韩文龙 储明慧 邵娟英.近视对OCT测量视网膜神经纤维层厚度的影响[J].眼科新进展,2012,32(12):000.
[3]张译心 巩琰 戴艳丽 黄厚斌 魏世辉.特发性脱髓鞘性视神经炎视网膜神经纤维层厚度和黄斑厚度的变化特点[J].眼科新进展,2013,33(2):000.
[4]马兰茗 金喜浓 金丽.光学相干断层扫描测量下方泪河高度诊断2型糖尿病患者眼干燥症的可行性[J].眼科新进展,2013,33(2):000.
[5]李朝晖 崔治华 胡晓英 孟丽珠 张敬维.糖尿病视网膜病变激光面积与疗效的分析[J].眼科新进展,2013,33(2):000.
[6]陈月芹 黄振平 薛春燕 葛轶睿.有晶状体眼虹膜固定型人工晶状体植入术后房角宽度的改变[J].眼科新进展,2013,33(6):000.
[7]杨世琳 杜改萍 郝玉华.频域OCT观察Vogt-小柳-原田病患者病程中黄斑中心凹的图像特点[J].眼科新进展,2013,33(6):000.
[8]辛晨 汪军 刘广峰 孟忻.增强成像技术光学相干断层扫描在在体脉络膜结构研究中的应用[J].眼科新进展,2013,33(6):000.
[9]马英慧 张铁民 齐建平.原发性开角型青光眼与慢性原发性闭角型青光眼视网膜神经纤维层厚度与视野缺损的关系[J].眼科新进展,2013,33(7):000.
[10]张海涛 杨玉新 毛永 丁晓丽 秦海霞 梁长华 郭英昌.青光眼与非炎症性缺血型视神经病变的傅立叶OCT扫描视神经形态学对比[J].眼科新进展,2013,33(8):000.
[11]蒋乐文,曹燕. 玻璃体切割术对增生性糖尿病视网膜病变患者黄斑区视网膜的影响[J].眼科新进展,2014,34(7):672.[doi:10.13389/j.cnki.rao.2014.0184]
[12]时倩倩,刘华,付蓉花. 全视网膜光凝术对增生性糖尿病视网膜病变患者黄斑区视网膜功能的影响[J].眼科新进展,2015,35(4):362.[doi:10.13389/j.cnki.rao.2015.0097]
 SHI Qian-Qian,LIU Hua,FU Rong-Hua. Effects of panretinal photocoagulation on macular retina of patients with proliferative diabetic retinopathy[J].Recent Advances in Ophthalmology,2015,35(3):362.[doi:10.13389/j.cnki.rao.2015.0097]
[13]马为梅,雷晓琴,田芳,等.视网膜静脉阻塞黄斑水肿的多焦视网膜电图与光学相干断层扫描分析[J].眼科新进展,2017,37(7):651.[doi:10.13389/j.cnki.rao.2017.0165]
 MA Wei-Mei,LEI Xiao-Qin,TIAN Fang,et al.Multifocal electroretinogram and optical coherence tomography characteristics of macular edema secondary to retinal vein occlusion[J].Recent Advances in Ophthalmology,2017,37(3):651.[doi:10.13389/j.cnki.rao.2017.0165]
[14]王一博,孟旭霞,余川,等.特发性黄斑裂孔患者术后黄斑区视网膜微结构修复与视功能恢复关系研究[J].眼科新进展,2021,41(3):244.[doi:10.13389/j.cnki.rao.2021.0051]
 WANG Yibo,MENG Xuxia,YU Chuan,et al.Relationship between postoperative macular microstructure repair and visual function recovery in patients with idiopathic macular fissure[J].Recent Advances in Ophthalmology,2021,41(3):244.[doi:10.13389/j.cnki.rao.2021.0051]

备注/Memo

备注/Memo:
山东省医药卫生科技发展计划项目资助(编号:2017WSB04066)
更新日期/Last Update: 2019-03-15