[1]曹长顺,杜益茗,柯宗文,等.小胶质细胞介导的炎症反应在衣霉素所致的小鼠视网膜损伤中的作用[J].眼科新进展,2020,40(12):1110-1114.[doi:10.13389/j.cnki.rao.2020.0247]
 CAO Changshun,DU Yiming,KE Zongwen,et al.Role of microglia-mediated inflammatory response in the retinal injury induced by tunicamycin in mice[J].Recent Advances in Ophthalmology,2020,40(12):1110-1114.[doi:10.13389/j.cnki.rao.2020.0247]
点击复制

小胶质细胞介导的炎症反应在衣霉素所致的小鼠视网膜损伤中的作用/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
40卷
期数:
2020年12期
页码:
1110-1114
栏目:
实验研究
出版日期:
2020-12-05

文章信息/Info

Title:
Role of microglia-mediated inflammatory response in the retinal injury induced by tunicamycin in mice
文章编号:
1110
作者:
曹长顺杜益茗柯宗文张洪英于利刘华姜双车慧欣骆玮
121000 辽宁省锦州市,锦州医科大学(曹长顺,杜益茗,柯宗文,张洪英,于利,刘华);121000 辽宁省锦州市,锦州医科大学附属第三医院眼科(姜双,车慧欣,骆玮)
Author(s):
CAO Changshun1DU Yiming1KE Zongwen1ZHANG Hongying1YU Li1LIU Hua1JIANG Shuang2CHE Huixin2LUO Wei2
1.Jinzhou Medical University,Jinzhou 121000,Liaoning Province,China
2.Department of Ophthalmology,the Third Affiliated Hospital of Jinzhou Medical University,Jinzhou 121000,Liaoning Province,China
关键词:
衣霉素小胶质细胞视网膜损伤炎症因子
Keywords:
tunicamycin microglia retinal injury inflammatory factor
分类号:
R774
DOI:
10.13389/j.cnki.rao.2020.0247
文献标志码:
A
摘要:
目的 探讨小胶质细胞介导的炎症反应在衣霉素所致的小鼠视网膜损伤中的作用。方法 取50只C57/BL6J小鼠,随机分为5组,每组10只;DMSO组给予小鼠玻璃体内注射DMSO溶液1 μL;衣霉素低剂量组给予小鼠玻璃体内注射50 mg?L-1衣霉素1 μL,衣霉素中剂量组注射100 mg?L-1衣霉素1 μL,衣霉素高剂量组注射150 mg?L-1衣霉素1 μL;对照组给予相同条件下喂养。采取小鼠玻璃体内注药建模后,分别进行OCT检查及HE染色观察小鼠视网膜组织形态改变;进行闪光视网膜电图检测评估视网膜视功能;免疫荧光染色及Western blot检测视网膜中Iba1及IL-6的表达情况。结果 与对照组相比,衣霉素低剂量组视网膜各层结构紊乱,视网膜外层呈波浪状改变,并出现细胞核排列紊乱;衣霉素中剂量组及高剂量组视网膜各层结构紊乱更加明显,并出现神经上皮与色素上皮的浅层脱离,IS/OS层及外丛状层消失。造模后第7天,闪光视网膜电图结果显示:对照组与DMSO组a波及b波振幅无差异;与对照组相比,衣霉素低剂量组、中剂量组及高剂量组a波、b波振幅下降,且呈剂量依赖性,其中a波振幅下降更为明显,差异均有统计学意义(均为P<0.05)。与对照组相比,衣霉素低剂量组、中剂量组及高剂量组视网膜内核层及外核层中Iba1表达量明显增多,且呈剂量依赖性(均为P<0.05);IL-6视网膜中呈现与Iba1相似的表达。结论 小胶质细胞参与衣霉素所致的小鼠视网膜损伤过程,并产生相关炎症因子引起视网膜功能及结构改变。
Abstract:
Objective To investigate the role of microglial-mediated inflammatory response in retinal damage caused by tunicamycin in mice.Methods Fifty C57/BL6J mice were randomly divided into 5 groups, each with 10 mice: the DMSO group, in which mice were given intravitreal injection of DMSO solution 1 μL; the low-dose group was given intravitreal injection of 50 mg?L-1 tunicamycin 1 μL; the middle-dose group was injected with 100 mg?L-1 tunicamycin 1 μL, and the high-dose group was injected with 150 mg?L-1 tunicamycin 1 μL; and the control group was fed under the same conditions. After a model of intravitreal injection of mice was established,OCT and HE staining were performed to observe the morphological changes of mouse retina; flash electroretinogram was performed to evaluate retinal visual function; immunofluorescence staining and Western blot were performed to detect the expression of Iba1 and IL-6.Results Compared with the control group, the low-dose tunicamycin group had a disorder of the various layers of the retina, the outer layer of the retina was wavy, and the nucleus was disturbed; the middle-dose and high-dose groups of tunicamycin had more obvious structural disorders of the retina, and the superficial detachment of the neuroepithelium and the pigment epithelium occurred, and the outer plexiform layer of the IS/OS layer disappeared. On the 7th day after modeling, the flash electroretinogram results showed that there was no difference in the amplitude of a wave and b wave between the control group and the DMSO group; compared with the control group, the amplitudes of a wave and b wave in the low-dose group, medium-dose group and high-dose group decreased in a dose-dependent manner, and the amplitude of the a wave decreased more obviously, and the differences were statistically significant (all P<0.05). Compared with the control group, the expression of Iba1 in the inner and outer nuclear layers of the retina in the low-dose, middle-dose, and high-dose groups of tunicamycin was significantly increased in a dose-dependent manner (all P<0.05). The expression manner of IL-6 was similar to Iba1’s expression.Conclusion Microglia are involved in the process of mouse retinal damage caused by tunicamycin, resulting in producing related inflammatory factors to cause changes in retinal function and structure.

参考文献/References:

[1] SINGARAVELU J ,ZHAO L,FARISS R N ,NORK T M,WONG W T.Microglia in the primate macula: specializations in microglial distribution and morphology with retinal position and with aging[J].Brain Struct Funct,2017,222(6):2759-2771.
[2] DANNHAUSEN K,RASHID K,LANGMANN T.Microglia analysis in retinal degeneration mouse models[J].Methods Mol Biol,2018,1753:159-166.
[3] GLASS C K,SAIJO K,WINNER B,MARCHETTO M C,GAGE F H.Mechanisms underlying inflammation in neurodegeneration[J].Cell,2010,140(6):918-934.
[4] BOSCO A,ROMERO C O,BREEN K T,CHAGOVETZ A A,STEELE M R,AMBATI B K,et al.Embryonic and postnatal development of microglial cells in the mouse retina[J].J Comp Neurol,2008,506(2):224-239.
[5] RANSOHOFF R M ,PERRY V H.Microglial physiology: Unique stimuli,specialized responses[J].Annu Rev Immunol,2009,27(1): 119-145.
[6] AGUZZI A,BARRES B A,BENNETT M L.Microglia: scapegoat,saboteur,or something else?[J].Science,2013,339(6116): 156-161.
[7] LING E A ,WONG W C .The origin and nature of ramified and amoeboid microglia: A historical review and current concepts[J].Glia,1993,7(1): 9-18.
[8] BOYA J ,CALVO J L ,CARBONELL A L .Appearance of microglial cells in the postnatal rat retina[J].Arch Histol Jpn,1987,50(2): 223.
[9] KUNCHITHAPAUTHAM K,ATKINSON C,ROHRER B.Smoke exposure causes endoplasmic reticulum stress and lipid accumulation in retinal pigment epithelium through oxidative stress and complement activation[J].J Biol Chem,2014,289(21):14534-14546.
[10] SAMALI A,FITZGERALD U,DEEGAN S,GUPTA S.Methods for monitoring endoplasmic reticulum stress and the unfolded protein response[J].Int J Cell Biol,2010,2010:830307.
[11] ELMASRY K,IBRAHIM A S,SALEH H M,ELSHERBINY N M,ELSHAFEY S,HUSSEIN K A,et al.Role of endoplasmic reticulum stress in 12/15-lipoxygenase-induced retinal microvascular dysfunction in a mouse model of diabetic retinopathy[J].Diabetologia,2018,61(5): 1220-1232.
[12] WANG X,ZHAO L,ZHANG J,FARISS R N,MA W,KRETSCHMER F,et al.Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina[J].J Neurosci,2016,36(9):2827-2842.
[13] RANA T,SHINDE V M ,STARR C R ,KRUGLOV A A,BOITET E R,KOTLA P,et al.An activated unfolded protein response promotes retinal degeneration and triggers an inflammatory response in the mouse retina[J].Cell Death Dis,2014,5(12):e1578.
[14] PANDEY R K ,YU F S ,KUMAR A .Targeting toll-like receptor signaling as a novel approach to prevent ocular infectious diseases[J].Indian J Med Res,2013,138(5):609-619.

相似文献/References:

[1]陈雪 李海平 张培 曹安民. 小胶质细胞在视网膜母细胞瘤中的活化及分布研究[J].眼科新进展,2014,34(1):029.
[2]董子奕,彭清华,李建超,等. 兔视网膜中央静脉阻塞模型中小胶质细胞CD40和铁蛋白的表达[J].眼科新进展,2015,35(2):116.[doi:10.13389/j.cnki.rao.2015.0031]
 DONG Zi-Yi,PENG Qing-Hua,LI Jian-Chao,et al. Expression of microglia cells CD40 and ferritin in rabbit model of central retinal vein occlusion[J].Recent Advances in Ophthalmology,2015,35(12):116.[doi:10.13389/j.cnki.rao.2015.0031]
[3]魏红领,刘韶瑞,刘泗容. 前房注射衣霉素建立大白兔慢性青光眼模型[J].眼科新进展,2015,35(7):629.[doi:10.13389/j.cnki.rao.2015.0171]
 WEI Hong-Ling,LIU Shao-Rui,LIU Si-Rong. Establishment of chronic glaucoma rabbit model by injecting tunicamycin to anterior chamber[J].Recent Advances in Ophthalmology,2015,35(12):629.[doi:10.13389/j.cnki.rao.2015.0171]
[4]尹婕,徐文芹,王雨生.小胶质细胞的特征及其在视网膜疾病中的作用[J].眼科新进展,2016,36(3):283.[doi:10.13389/j.cnki.rao.2016.0077]
 YIN Jie,XU Wen-Qin,WANG Yu-Sheng.Properties of microglia and its functions in retinal diseases[J].Recent Advances in Ophthalmology,2016,36(12):283.[doi:10.13389/j.cnki.rao.2016.0077]
[5]孔涛,王兰兰,高岚.转基因荧光小鼠视神经轴索钝性损伤后退行性病变观察[J].眼科新进展,2017,37(8):719.[doi:10.13389/j.cnki.rao.2017.0182]
 KONG Tao,WANG Lan-Lan,GAO Lan.Neurodegenerative disorder after optic nerve crush in transgenic fluorescence mice[J].Recent Advances in Ophthalmology,2017,37(12):719.[doi:10.13389/j.cnki.rao.2017.0182]
[6]张悦,董宁.糖尿病视网膜病变中视网膜小胶质细胞活化及干预机制研究进展[J].眼科新进展,2017,37(9):890.[doi:10.13389/j.cnki.rao.2017.0226]
 ZHANG Yue,DONG Ning.Recent advances in microglia activation and intervention mechanism in diabetic retinopathy[J].Recent Advances in Ophthalmology,2017,37(12):890.[doi:10.13389/j.cnki.rao.2017.0226]
[7]沙雪莉,杨鹏飞,安文珍,等.玻璃体内注射辅酶Q10对NaIO3诱导的AMD模型小鼠的保护作用[J].眼科新进展,2018,38(11):1014.[doi:10.13389/j.cnki.rao.2018.0239]
 SHA Xue-Li,YANG Pei-Fei,AN Wen-Zhen,et al.Protective effect of intravitreal injection of coenzyme Q10 on NaIO3-induced age-related macular degeneration in model mice[J].Recent Advances in Ophthalmology,2018,38(12):1014.[doi:10.13389/j.cnki.rao.2018.0239]
[8]刘安琪,左中夫,吴传玲,等.Netrin-1对糖尿病视网膜病变大鼠的保护作用[J].眼科新进展,2020,40(1):011.[doi:10.13389/j.cnki.rao.2020.0003]
 LIU Anqi,ZUO Zhongfu,WU Chuanling,et al.Protective effect of Netrin-1 on rats with diabetic retinopathy[J].Recent Advances in Ophthalmology,2020,40(12):011.[doi:10.13389/j.cnki.rao.2020.0003]
[9]刘然,晏颖,陈晓.去小胶质细胞化对糖尿病小鼠视网膜光感受器细胞的影响[J].眼科新进展,2020,40(12):1114.[doi:10.13389/j.cnki.rao.2020.0248]
 LIU Ran,YAN Ying,CHEN Xiao.Effects of deletion microglia on retinal photoreceptor cells in diabetic mice[J].Recent Advances in Ophthalmology,2020,40(12):1114.[doi:10.13389/j.cnki.rao.2020.0248]
[10]牛占宇,李建德,石永鹏,等.尾静脉注射碘酸钠对小鼠视网膜形态结构变化的影响[J].眼科新进展,2021,41(1):018.[doi:10.13389/j.cnki.rao.2021.0004]
 NIU Zhanyu,LI Jiande,SHI Yongpeng,et al.Effect of sodium iodate on morphological and structural changes of retina in mice[J].Recent Advances in Ophthalmology,2021,41(12):018.[doi:10.13389/j.cnki.rao.2021.0004]

备注/Memo

备注/Memo:
辽宁省自然科学基金(编号:81641057、2019-BS-101);辽宁医学院校长基金-奥鸿博泽基金(编号:XZJJ20140125)
更新日期/Last Update: 2020-12-05