《眼科新进展》  2017年11期 1083-1087   出版日期:2017-11-05   ISSN:1003-5141   CN:41-1105/R
圆锥角膜遗传病因学的研究进展


    圆锥角膜(keratoconus)是一种进行性的、不对称的角膜扩张,以角膜中央变薄,圆锥状前凸为特征,导致不规则散光及近视,造成视力减退[1],是全球角膜移植术的三大指征之一[2]。尽管圆锥角膜通常被定义为退行性疾病,但对其发生发展机制仍然知之甚少[3]。圆锥角膜各种潜在的复杂病因中,就包括了遗传易感性[4-6]。研究表明,具有圆锥角膜家族史的人群患病几率大大增加[7-8]。此外,圆锥角膜还可能与其他遗传病相关,如炎症性肠道疾病[9]、家族性地中海热[10]、与唐氏综合征相关的罕见染色体异常[11]、糖尿病[12-13]以及精神分裂症[14]。在目前的临床实践中,不具有家族关联性的圆锥角膜个体病例是最常见的。因此,与这种类型圆锥角膜相关的基因鉴定工作也一直是主要的关注点。通过角膜地形图和OCT已经找到一些适用于基因研究的亚临床表型标记物,如角膜前后表面地形和厚度数据[15]等。已发现的圆锥角膜相关基因中,一些是负责编码各种胶原并与细胞外基质产生有关的基因,而另一些则与这些功能并不相关。对圆锥角膜病因的遗传学研究将有望帮助临床医师预测并最终预防圆锥角膜的发生。
1 传统的连锁分析
    家族性遗传在圆锥角膜的发病机制中起着重要的作用。大多数家族性圆锥角膜为常染色体显性遗传,少数则显现出常隐模式。基于家族的传统连锁分析已识别出19个可能存在圆锥角膜相关突变的基因位点[6],这也有力地证实了圆锥角膜发病机制的遗传异质性。其中chr5q21.2区域已被成功复制,并在高密度单核苷酸多态性(single nucleotide polymorphisms,SNP)连锁研究中得到证实[16]
    microRNA 184(miR-184)是一段由19~25个核苷酸组成、具有转录后调控功能的非编码miRNA,在角膜和晶状体中有丰富的表达。在一个患有严重前表面圆锥角膜和早发性前极白内障的北爱尔兰家族患者的miR-184种子区内,鉴定出了杂合突变(r.57 C>U),该突变使得miR-184在与两个靶基因3’-UTR区结合的竞争中弱于与之有重叠目标位点的miR-205,而这两个靶基因编码的蛋白参与了角膜损伤后的修复[17]。最近,在西班牙一个患有白内障和各种角膜异常(包括严重的圆锥角膜)的五代家族中也发现了该突变的存在[18-19]。遗传系谱检测表明:miR-184 c.57 C>T突变在西班牙和北爱尔兰家族是独立发生的,因而成为首例关于miRNA基因频发种系突变导致遗传性疾病的描述[20]。然而在散发性圆锥角膜患者miR184的茎环内未发现该突变,表明miR184中的突变与具有其他眼部异常的圆锥角膜病例更为相关[21-22]。在散发性圆锥角膜患者中还报道了另外两种出现频率非常低的miR-18的突变,即r.8C>A和r.3A>G[22]。在圆锥角膜患者中发现,miR-18突变导致的调控作用的改变可能会直接影响角膜发育和维持关键基因的转录活性。要发现其他受miR-184调控并与圆锥角膜相关的候选基因仍然有待下一步研究。
2 全基因组连锁分析
    全基因组连锁分析(genome-wide linkage studies)是用一组基因标记物对于患某种疾病的各家族进行全基因组的基因分型,并确定这些标记物在不同患病家族的隔离分布情况。传统的微卫星标记物使分型工作极为耗时,而SNP是一种均匀分布在整个人类基因组中的多态性标记物,由于其快速准确的应答,高密度SNP阵列迅速成为了基因分型平台的优先选择。
2.1 赖氨酰氧化酶基因 圆锥角膜遗传学领域最重要的发展之一就是发现了胶原交联酶赖氨酰氧化酶(lysyl oxidase,LOX)基因的多态性[23]。其缺陷可能使角膜基质胶原纤维交联减少,从而导致角膜生物力学变弱。通过两阶段全基因组连锁分析,发现该基因可能是5q32-q33染色体区域上的连锁信号[24]。在捷克[25]、我国[26]及伊朗[27] 进行的多个圆锥角膜患者群体样本广泛的基因分型及Meta分析结果[28]中发现了LOX基因中的SNP rs2956540。此外,功能数据分析显示圆锥角膜中LOX的分布变化和活性降低[29],并且患者上皮中LOX基因表达水平的降低程度与疾病严重程度是相符的[30],这也说明该基因参与了圆锥角膜的病理过程。
2.2 钙蛋白酶抑素基因 全基因组连锁分析将圆锥角膜位点定位于5q14.3-q21.1[23]的基因组区域。该区域与钙蛋白酶抑素(calpastatin,CAST)基因重叠,基于其在哺乳动物眼中的广泛存在将其选入候选基因[31]。与正常角膜组织相比,圆锥角膜中CAST基因表达序列标签(expressed sequence tags)的分布存在差异[31]。使用微卫星标记的连锁分析及高密度SNP基因分型均发现CAST基因与圆锥角膜显著相关[16,31]
2.3 胞质分裂供体9基因 在厄瓜多尔圆锥角膜家族中,对染色体13q32区域的8个候选基因的突变筛选发现胞质分裂供体9(dedicator of cytokinesis 9,DOCK9)基因存在潜在突变位点c.2262A> C(p.Gn7575His)[32]。DOCK9蛋白是具有GTP/GDP交换因子活性的DOCK蛋白家族成员,可特异性激活G蛋白CDC42,该基因在人角膜中有表达[32]。然而,该基因突变在其他圆锥角膜家族和患者[33]中的研究以及其功能性分析仍有待进行。
2.4 其他位点 迄今为止,通过全基因组连锁分析鉴定已得到如下圆锥角膜相关基因位点:1p36.23-36.21,2p24,2q13,3p14-q13,5q14.3-q21.1,5q21.2,5q32-q33,8q13.1-q21.11,9q34,13q32,14q11.2,14q24.3,15q15.1,15q22.33-24.2,16q22.3-q23.1,20p13-p12.2及20q12。在厄瓜多尔家族性圆锥角膜患者中发现白细胞介素1受体拮抗剂和溶质载体家族4硼酸钠转运体11号成员基因的突变体与2q13-q14.3及20p13-p12区相关[34]
3 全基因组关联分析
    多年来,传统连锁分析或者全基因组连锁分析曾是对孟德尔疾病和具有家族聚集倾向的复杂性状进行基因定位的主要工具。然而在过去十年中,全基因组关联分析(genomewide association studies)已成为一个探索人类疾病遗传结构的强大工具,特别是对于复杂且常见的遗传性状。该方法是应用基因组中数以百万计的SNP为分子遗传标记,进行全基因组水平上的对照分析或相关性分析,通过比较发现影响复杂性状基因突变的一种新策略。圆锥角膜相关的两个主要的全基因组关联分析几乎是同时进行的,并分别为该疾病确定了新的候选基因。
3.1 肝细胞生长因子基因 第一个在澳大利亚圆锥角膜患者人群混合DNA样本的肝细胞生长因子基因中获得了启动子多态性的SNP rs3735520[35],并在一组欧洲裔捷克圆锥角膜患者[25]中得到了证实。在澳大利亚圆锥角膜患群中还鉴定出其他多个相关的肝细胞生长因子基因多态性SNP[36]
3.2 RAB3 GTP酶激活蛋白催化亚基基因 第二个全基因组关联分析获得了RAB3 GTP酶激活蛋白催化亚基(RAB3 GTPase activating protein catalytic subunit)基因新的SNP rs4954218[37]。该SNP在澳大利亚白种人圆锥角膜患者中也被独立复制,这一发现进一步证实了该新位点与圆锥角膜的关联性[38]
4 圆锥角膜及角膜中央厚度的相关基因
    人类角膜中央厚度(central corneal thickness,CCT)是一种高度遗传的性状,且其减小通常与圆锥角膜有关[39]。全基因组关联分析确定了一些与CCT差异相关的基因位点,发现了各种族之间遗传因素决定的CCT差异,并评估了CCT相关基因位点与圆锥角膜易感性的相关性[40-42]
4.1 COL5A1 角膜基质是由胶原原纤维组成的,那么许多与CCT相关的基因位点都是编码各种胶原基因(如COL1A1、COL1A2和COL8A2)的就不奇怪了。多证据表明负责编码V型胶原亚基1的COL5A1基因参与了CCT变化[42-43]和圆锥角膜的发生[40,44]。然而,携带该等位基因突变体的圆锥角膜家族和散发性患者中仅有一部分存在角膜较薄现象,这说明COL5A1基因突变、角膜变薄和圆锥角膜之间的关系甚为复杂[44]
4.2 FNDC3B、FOXO1、MPDZ-NF1B 对多个国家圆锥角膜患者的研究发现,与CCT相关的FNDC3B基因中的rs4894535、FOXO1基因附近的rs2721051和位于MPDZ和NF1B基因之间的rs1324183都与圆锥角膜相关[40]。其中,SNP rs1324183与中国[26]和澳大利亚人群[45]圆锥角膜的患病风险增加相关。
4.3 无翅型MMTV整合位点家族成员10A基因 已报道的基于CCT的全基因组关联主要集中在普通突变上(即最小等位基因频率>5%);然而,根据Illumina人类外显子组阵列推测出的具有编码功能的稀有外显子突变体,研究者鉴定出了一种无翅型MMTV整合位点家族成员10A(wingless-type MMTV integration site family member 10A,WNT10A)基因新的稀有外显子突变体(rs121908120),它通过降低角膜厚度来增加圆锥角膜的患病风险[46]。该突变体可使圆锥角膜的患病风险增加两倍。WNT10A属于WNT基因家族,该家族包括编码分泌型信号分子的相关结构基因,这些基因涉及重要的发育过程,如调节角膜发育过程中的细胞命运和模式[47]
5 圆锥角膜及角膜营养不良的相关基因
5.1 转化生长因子β诱导蛋白基因 转化生长因子β诱导蛋白(TGF beta-induced protein,TGFBIP)是一种细胞外蛋白质,TGFB信号通路的激活可使其表达发生变化,从而介导细胞与胶原蛋白、层粘连蛋白、纤连蛋白及蛋白聚糖的黏附[48]。在Fuchs角膜内皮营养不良(Fuchs’ endothelial corneal dystrophy,FECD)患者的角膜中TGFBI蛋白水平升高[49]。在圆锥角膜样本构建的cDNA文库中,TGFBI的转录丰度位列第二[48]。近来,在我国[50]和波兰[51]的圆锥角膜患者中均发现了TGFBI的潜在突变体。
5.2 锌指蛋白469基因 锌指蛋白469(zinc finger protein 469,ZNF469)基因常见的突变体rs9938149可增加圆锥角膜的患病风险,并影响普通人群的CCT[40]。此外,对不同种族圆锥角膜患者ZNF469基因进行的大范围测序发现了许多潜在的圆锥角膜致病性等位基因[52-54]。新西兰43例圆锥角膜患者中有23%存在这些等位基因的错义突变[53]。在欧洲3例散发性圆锥角膜患者群中有12.5%存在该基因的突变[54]。然而,在波兰圆锥角膜患者中却未发现ZNF469的明显突变[55]。因此,ZNF469是否参与圆锥角膜的发病目前仍存在争议。
5.3 锌指E盒结合同源框1基因 锌指E盒结合同源框1(zinc finger E-box binding homeobox 1,ZEB1)基因的突变c.1920 G> T(p.Gln640His)在圆锥角膜和FECD家族中被首次发现[56],之后在同时患有圆锥角膜、上皮基底膜营养不良和FECD的患者中[57]也发现了该突变,进一步证实了ZEB1突变谱具有独特的基因型-表型相关性。
5.4 视觉系统同源框1基因 视觉系统同源框1(visual system homeobox 1,VSX1)基因属于同源域转录因子家族,控制着颅面和眼部发育中的细胞分化,因而成为圆锥角膜及角膜营养不良的相关候选基因[58]。各种VSX1基因突变体在诸多国家的散发性和家族性圆锥角膜病例中被发现[59-61]。然而,在运用基因分型法对大量患者的SNP筛选中,并未发现与VSX1突变相关的证据[62-63]。现有的证据表明VSX1基因在圆锥角膜发病中可能并不起关键作用。
6 其他候选基因
6.1 超氧化物歧化酶1基因 超氧化物歧化酶1基因作为圆锥角膜的候选基因已经被反复地提出和研究,已公开的数据既有支持[62]也有反对[64]。圆锥角膜患者角膜氧化应激标志物水平的间或升高[65]表明,负责代谢超氧化物自由基的超氧化物歧化酶1基因的缺陷,可能影响该疾病的发展。然而,由于缺乏支持该基因参与圆锥角膜的确凿数据,上述氧化应激也可能是由其他基因缺陷引起病理过程的最终结果。
6.2 白细胞介素1β和白细胞介素1α基因 在我国汉族人[59,66]和日本人[67]的圆锥角膜和对照人群中,白细胞介素1β基因启动子多态性和白细胞介素1α基因内含子多态性rs2071376的等位基因频率在两种人群中存在显著性差异,这说明其在圆锥角膜易感性中发挥了一定的作用。然而,在土耳其人群中的数据并没有显示出相关性[68]
6.3 COL4A3、COL4A4 COL4A3和COL4A4基因也被认为是与圆锥角膜相关的候选基因[69-70],然而,多个群体中的研究却未发现其SNP与圆锥角膜的关联性[59,71],且在正常人群中也广泛存在[72]
    对圆锥角膜发病机制遗传学研究的不断深入有助于推进其治疗方法的改进,并有望帮助临床研究者最终预测和预防圆锥角膜疾病的发生。