[1]王雪梅,曲超.青光眼视神经损伤的发病机制及治疗研究最新进展[J].眼科新进展,2024,44(7):572-577.[doi:10.13389/j.cnki.rao.2024.0110]
 WANG Xuemei,QU Chao.Recent advances in pathogenesis and treatment of optic nerve injury in glaucoma[J].Recent Advances in Ophthalmology,2024,44(7):572-577.[doi:10.13389/j.cnki.rao.2024.0110]
点击复制

青光眼视神经损伤的发病机制及治疗研究最新进展/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
44卷
期数:
2024年7期
页码:
572-577
栏目:
文献综述
出版日期:
2024-07-01

文章信息/Info

Title:
Recent advances in pathogenesis and treatment of optic nerve injury in glaucoma
作者:
王雪梅曲超
646000 四川省泸州市,西南医科大学附属医院眼科
Author(s):
WANG XuemeiQU Chao
Department of Ophthalmology,the Affiliated Hospital of Southwest Medical University,Luzhou 646000,Sichuan Province,China
关键词:
青光眼视网膜视神经节细胞铁死亡自噬
Keywords:
glaucoma retinal ganglion cells ferroptosis autophagy
分类号:
R774.6
DOI:
10.13389/j.cnki.rao.2024.0110
文献标志码:
A
摘要:
青光眼是以进行性视野缺损为特征的致盲性眼病,由于疾病导致视网膜神经节细胞(RGCs)不可逆及非选择性死亡,使得如何恢复青光眼患者受损的视功能成为一项世界性难题。传统观点认为,病理性眼压升高是视神经损伤的主要机制,但尚不能解释正常眼压性青光眼患者的RGCs 及视神经损伤,控制眼压也不能逆转已有的视功能障碍。近年来,对于青光眼患者RGCs 及视神经损伤的发病机制研究更加广泛深入,主要集中在对RGCs 非凋亡性死亡、局部胶质细胞活化、神经递质毒性以及线粒体功能障碍等的研究,也从不同角度提出了诸多RGCs 的保护性干预措施。本文综述了青光眼视神经损伤机制及相关治疗研究的最新进展,为进一步研究如何预防及治疗青光眼视神经损伤提供理论依据。
Abstract:
Glaucoma is a blinding eye disease characterized by progressive visual field defects. It poses a significant challenge worldwide because of the irreversible and non-selective death of retinal ganglion cells (RGCs) it causes, resulting in impaired visual function. The traditional belief is that pathological elevation of intraocular pressure (IOP) is the primary mechanism of optic nerve injury. However, this explanation doesn’t account for the damage to RGCs and the optic nerve in glaucoma patients with normal IOP. Additionally, controlling IOP cannot reverse preexisting visual dysfunction. In recent years, extensive research has delved into the pathogenesis of damage to RGCs and the optic nerve in glaucoma patients, focusing on non-apoptotic RGCs death, local activation of glial cells, neurotransmitter toxicity, and mitochondrial dysfunction. Based on these, numerous protective interventions for RGCs have been proposed. This article summarizes the latest progress of research on the mechanism of glaucomatous optic nerve injury and related treatments, providing a theoretical basis for further research on how to prevent and treat glaucomatous optic nerve injury.

参考文献/References:

[1] FAIQ M A,DADA R,KUMAR A,SALUJA D,DADA T.Brain:the potential diagnostic and therapeutic target for glaucoma[J].CNS Neurol Disord Drug Targets,2016,15(7):839-844.
[2] SCHNEIDER M,FUCHSHOFER R.The role of astrocytes in optic nerve head fibrosis in glaucoma[J].Exp Eye Res,2016,142:49-55.
[3] ZENG Z,YOU M,FAN C,RONG R,LI H,XIA X.Pathologically high intraocular pressure induces mitochondrial dysfunction through Drp1 and leads to retinal ganglion cell PANoptosis in glaucoma[J].Redox Biol,2023,62:102687.
[4] YAO F,PENG J,ZHANG E,JI D,GAO Z,TANG Y,et al.Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma[J].Cell Death Differ,2023,30(1):69-81.
[5] HWANG J C,KONDURU R,ZHANG X,TAN O,FRANCIS B A,VARMA R,et al.Relationship among visual field,blood flow,and neural structure measurements in glaucoma[J].Invest Ophthalmol Vis Sci,2012,53(6):3020-3026.
[6] 徐晓红,廖天江,严灿荣,刘锋.不同类型青光眼彩色多普勒血流显像的比较研究[J].中国医学影像技术,2004,20(10):1552-1554.
XU X H,LIAO T J,YAN C R,LIU F.Ocular hemodynamics in patients with different types of glaucoma by color Doppler flow imaging[J].Chin J Med Imag Technol,2004,20(10):1552-1554.
[7] 张向荣,陈蔷娟,陈丽,邓林云.彩色多普勒超声对青光眼眼血流动力学变化的研究[J].中国实用眼科杂志,2001(8):610-612.
ZHANG X R,CHEN Q J,CHEN L,DENG L Y.Color Doppler imaging analysis of ocular hemodynamics in patients with glaucoma[J].Chin J Pract Ophthalmol,2001(8):610-612.
[8] 朱海霞.观察分析青光眼患者血流变、Aβ、β-EP、Hcy及眼部血流动力学指标的变化情况[J].临床医学,2015,35(11):113-114.
ZHU H X.To observe and analyze the changes of hemorheology,Aβ,β-EP,Hcy and ocular hemodynamics in glaucoma patients[J].Clin Med,2015,35(11):113-114.
[9] HIRSCHHORN T,STOCKWELL B R.The development of the concept of ferroptosis[J].Free Radic Biol Med,2019,133:130-143.
[10] HE X,HAHN P,IACOVELLI J,WONG R,KING C,BHISITKUL R,et al.Iron homeostasis and toxicity in retinal degeneration[J].Prog Retin Eye Res,2007,26(6):649-673.
[11] WANG S Y,SINGH K,LIN S C.The association between glaucoma prevalence and supplementation with the oxidants calcium and iron[J].Invest Ophthalmol Vis Sci,2012,53(2):725-731.
[12] DIXON S J,LEMBERG K M,LAMPRECHT M R,SKOUTA R,ZAITSEV E M,GLEASON C E,et al.Ferroptosis:an iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5):1060-1072.
[13] SUO L,DAI W,CHEN X,QIN X,LI G,SONG S,et al.Proteomics analysis of N-methyl-d-aspartate-induced cell death in retinal and optic nerves[J].J Proteomics,2022,252:104427.
[14] SHI J,GAO W,SHAO F.Pyroptosis:gasdermin-mediated programmed necrotic cell death[J].Trends Biochem Sci,2017,42(4):245-254.
[15] SHI J,ZHAO Y,WANG K,SHI X,WANG Y,HUANG H,et al.Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J].Nature,2015,526(7575):660-665.
[16] ZHANG Y,HUANG Y,GUO L,ZHANG Y,ZHAO M,XUE F,et al.Melatonin alleviates pyroptosis of retinal neurons following acute intraocular hypertension[J].CNS Neurol Disord Drug Targets,2021,20(3):285-297.
[17] CHEN H,DENG Y,GAN X,LI Y,HUANG W,LU L,et al.NLRP12 collaborates with NLRP3 and NLRC4 to promote pyroptosis inducing ganglion cell death of acute glaucoma[J].Mol Neurodegener,2020,15(1):26.
[18] ZHANG Y,XU Y,SUN Q,XUE S,GUAN H,JI M.Activation of P2X7R- NLRP3 pathway in retinal microglia contribute to retinal ganglion cells death in chronic ocular hypertension (COH)[J].Exp Eye Res,2019,188:107771.
[19] TAKESHIGE K,BABA M,TSUBOI S,NODA T,OHSUMI Y.Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction[J].J Cell Biol,1992,119(2):301-311.
[20] ARIOSA A R,KLIONSKY D J.Autophagy core machinery:overcoming spatial barriers in neurons[J].J Mol Med,2016,94(11):1217-1227.
[21] PARK H Y L,KIM J H,PARK C K.Different contributions of autophagy to retinal ganglion cell death in the diabetic and glaucomatous retinas[J].Sci Rep,2018,8(1):13321.
[22] JOACHIM S C,GRAMLICH O W,LASPAS P,SCHMID H,BECK S,VON PEIN H D,et al.Retinal ganglion cell loss is accompanied by antibody depositions and increased levels of microglia after immunization with retinal antigens[J].PLoS One,2012,7(7):e40616.
[23] ZHANG Q,HE C,LI R,KE Y,SUN K,WANG J.MiR-708 and miR-335-3p inhibit the apoptosis of retinal ganglion cells through suppressing autophagy[J].J Mol Neurosci,2021,71(2):284-292.
[24] ZHANG S,SHAO Z,LIU X,HOU M,CHENG F,LEI D,et al.The E50K optineurin mutation impacts autophagy-mediated degradation of TDP-43 and leads to RGC apoptosis in vivo and in vitro[J].Cell Death Discov,2021,7(1):49.
[25] WEI X,CHO K S,THEE E F,JAGER M J,CHEN D F.Neuroinflammation and microglia in glaucoma:time for a paradigm shift[J].J Neurosci Res,2019,97(1):70-76.
[26] KARLSTETTER M,EBERT S,LANGMANN T.Microglia in the healthy and degenerating retina:insights from novel mouse models[J].Immunobiology,2010,215(9-10):685-691.
[27] TAYLOR S,CALDER C J,ALBON J,ERICHSEN J T,BOULTON M E,MORGAN J E.Involvement of the CD200 receptor complex in microglia activation in experimental glaucoma[J].Exp Eye Res,2011,92(5):338-343.
[28] CAI X F,LIN S,GENG Z,LUO L L,LIU Y J,ZHANG Z,et al.Integrin CD11b deficiency aggravates retinal microglial activation and RGCs degeneration after acute optic nerve injury[J].Neurochem Res,2020,45(5):1072-1085.
[29] MARAGAKIS N J,ROTHSTEIN J D.Mechanisms of disease:astrocytes in neurodegenerative disease[J].Nat Clin Pract Neurol,2006,2(12):679-689.
[30] BARBAR L,JAIN T,ZIMMER M,KRUGLIKOV I,SADICK J S,WANG M,et al.CD49f is a novel marker of functional and reactive human iPSC-derived astrocytes[J].Neuron,2020,107(3):436-453.e12.
[31] BOOTH H D E,HIRST W D,WADE-MARTINS R.The role of astrocyte dysfunction in Parkinson’s disease pathogenesis[J].Trends Neurosci,2017,40(6):358-370.
[32] VICTORINO P H,MARRA C,IACOBAS D A,IACOBAS S,SPRAY D C.Retinal genomic fabric remodeling after optic nerve injury.Genes (Basel),2021,12(3):403.
[33] MORGAN J,CAPRIOLI J,KOSEKI Y.Nitric oxide mediates excitotoxic and anoxic damage in rat retinal ganglion cells cocultured with astroglia[J].Arch Ophthalmol,1999,117(11):1524-1529.
[34] YAN X,TEZEL G,WAX M B,EDWARD D P.Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head[J].Arch Ophthalmol,2000,118(5):666-673.
[35] HERNANDEZ M R.The optic nerve head in glaucoma:role of astrocytes in tissue remodeling[J].Prog Retin Eye Res,2000,19(3):297-321.
[36] OLNEY J W.The toxic effects of glutamate and related compounds in the retina and the brain[J].Retina,1982,2(4):341-359.
[37] THORESON W B,WITKOVSKY P.Glutamate receptors and circuits in the vertebrate retina[J].Prog Retin Eye Res,1999,18(6):765-810.
[38] LIU M,LI H,YANG R,JI D,XIA X.GSK872 and necrostatin-1 protect retinal ganglion cells against necroptosis through inhibition of RIP1/RIP3/MLKL pathway in glutamate-induced retinal excitotoxic model of glaucoma[J].J Neuroinflammation,2022,19(1):262.
[39] CHEN Y J,HUANG Y S,CHEN J T,CHEN Y H,TAI M C,CHEN C L,et al.Protective effects of glucosamine on oxidative-stress and ischemia/reperfusion-induced retinal injury[J].Invest Ophthalmol Vis Sci,2015,56(3):1506-1516.
[40] GHERGHEL D,MROCZKOWSKA S,QIN L.Reduction in blood glutathione levels occurs similarly in patients with primary-open angle or normal tension glaucoma[J].Invest Ophthalmol Vis Sci,2013,54(5):3333-3339.
[41] TEZEL G,WAX M B.Hypoxia-inducible factor 1alpha in the glaucomatous retina and optic nerve head[J].Arch Ophthalmol,2004,122(9):1348-1356.
[42] LIU S M,LIAO L S,HUANG J F,WANG S C.Role of CAST-Drp1 pathway in retinal neuron-regulated necrosis in experimental glaucoma[J].Curr Med Sci,2023,43(1):166-172.
[43] TONNER H,HUNN S,AULER N,SCHMELTER C,PFEIFFER N,GRUS F H.Dynamin-like protein 1 (DNML1) as a molecular target for antibody-based immunotherapy to treat glaucoma[J].Int J Mol Sci,2022,23(21):13618.
[44] CHEN D,SUN Y Y,ZHOU L Y,HAN X,YANG S,HONG F Y,et al.Knockdown of Porf-2 restores visual function after optic nerve crush injury[J].Cell Death Dis,2023,14(8):570.
[45] LIU X,LI X,WU G,QI P,ZHANG Y,LIU Z,et al.Umbilical cord mesenchymal stem cell-derived small extracellular vesicles deliver miR-21 to promote corneal epithelial wound healing through PTEN/PI3K/akt pathway[J].Stem Cells Int,2022,2022:1252557.
[46] ZHU T,HUANG X,PENG S,YE Y,ZHAO J.Ultrasound targeted microbubble destruction promotes the therapeutic effect of HUMSC transplantation on glaucoma-caused optic nerve injury in rabbits[J].Transl Vis Sci Technol,2022,11(5):12.
[47] KWON H S,KEVALA K,QIAN H,ABU-ASAB M,PATNAIK S,MARUGAN J,et al.Ligand-induced activation of GPR110 (ADGRF1) to improve visual function impaired by optic nerve injury[J].Int J Mol Sci,2023,24(6):5340.
[48] DE LA ROSA-REYES V,DUPREY-DAZ M V,BLAGBURN J M,BLANCO R E.Retinoic acid treatment recruits macrophages and increases axonal regeneration after optic nerve injury in the frog Rana pipiens[J].PLoS One,2021,16(11):e0255196.
[49] 杨明,高瀛政,李萌,曹霞,黄新伟.潜伏表达癌调蛋白的HSV-1减毒载体能有效治疗大鼠机械性视神经损伤[J].南方医科大学学报,2021,41(10):1448-1455.
YANG M,GAO Y Z,LI M,CAO X,HUANG X W.Attenuated Herpes simplex virus 1 vector expressing oncomodulin effectively allieviates mechanical optic nerve injury in rats[J].J South Med Univ,2021,41(10):1448-1455.
[50] CHEN J,LI H,YANG C,HE Y,ARAI T,HUANG Q,et al.Citrus naringenin increases neuron survival in optic nerve crush injury model by inhibiting JNK-JUN pathway[J].Int J Mol Sci,2021,23(1):385.
[51] ROSS A G,MCDOUGALD D S,KHAN R S,DUONG T T,DINE K E,ARAVAND P,et al.Rescue of retinal ganglion cells in optic nerve injury using cell-selective AAV mediated delivery of SIRT1[J].Gene Ther,2021,28(5):256-264.
[52] MEAD B,KERR A,NAKAYA N,TOMAREV S I.miRNA changes in retinal ganglion cells after optic nerve crush and glaucomatous damage[J].Cells,2021,10(7):1564.
[53] MENG Z,YOU R,MAHMOOD A,YAN F,WANG Y.Application of proteomics analysis and animal models in optic nerve injury diseases[J].Brain Sci,2023,13(3):404.
[54] CONRAD M,FRIEDMANN ANGELI J P.Glutathione peroxidase 4 (Gpx4) and ferroptosis:what’s so special about it?[J].Mol Cell Oncol,2015,2(3):e995047.
[55] BERSUKER K,HENDRICKS J M,LI Z,MAGTANONG L,FORD B,TANG P H,et al.The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J].Nature,2019,575(7784):688-692.
[56] MAO C,LIU X,ZHANG Y,LEI G,YAN Y,LEE H,et al.DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J].Nature,2021,593(7860):586-590.
[57] RASHID K,VERHOYEN M,TAIWO M,LANGMANN T.Translocator protein (18 kDa) (TSPO) ligands activate Nrf2 signaling and attenuate inflammatory responses and oxidative stress in human retinal pigment epithelial cells[J].Biochem Biophys Res Commun,2020,528(2):261-268.
[58] ZHANG Z,LIU W,HUANG Y,LUO L,CAI X,LIU Y,et al.NLRP3 deficiency attenuates secondary degeneration of visual cortical neurons following optic nerve injury[J].Neurosci Bull,2020,36(3):277-288.
[59] SASE K,TSUKAHARA C,FUJITA N,ARIZONO I,TAKAGI H,KITAOKA Y.Akebia Saponin D prevents axonal loss against TNF-induced optic nerve damage with autophagy modulation[J].Mol Biol Rep,2020,47(12):9733-9738.
[60] XI X,CHEN Q,MA J,WNG X,XIA Y,WEN X,et al.Acteoside protects retinal ganglion cells from experimental glaucoma by activating the PI3K/AKT signaling pathway via caveolin 1 upregulation[J].Ann Transl Med,2022,10(6):312.
[61] BOSCO A,INMAN D M,STEELE M R,WU G,SOTO I,MARSH-ARMSTRONG N,et al.Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma[J].Invest Ophthalmol Vis Sci,2008,49(4):1437-1446.
[62] WANG Y,CHEN S,WANG J,LIU Y,CHEN Y,WEN T,et al.MicroRNA-93/STAT3 signalling pathway mediates retinal microglial activation and protects retinal ganglion cells in an acute ocular hypertension model[J].Cell Death Dis,2021,12(1):41.
[63] CHAN A S Y,TUN S B B,LYNN M N,HO C,TUN T A,GIRARD M J A,et al.Intravitreal neuroglobin mitigates primate experimental glaucomatous structural damage in association with reduced optic nerve microglial and complement 3-astrocyte activation[J].Biomolecules,2023,13(6):961.
[64] CHEN S,LATHROP K L,KUWAJIMA T,GROSS J M.Retinal ganglion cell survival after severe optic nerve injury is modulated by crosstalk between Jak/Stat signaling and innate immune responses in the zebrafish retina[J].Development,2022,149(8):dev199694.
[65] SATO K,OHNO-OISHI M,YOSHIDA M,SATO T,AIZAWA T,SASAKI Y,et al.The GPR84 molecule is a mediator of a subpopulation of retinal microglia that promote TNF/IL-1α expression via the rho-ROCK pathway after optic nerve injury[J].Glia,2023,71(11):2609-2622.
[66] YANG Y,WANG N,XU L,LIU Y,HUANG L,GU M,et al.Aryl hydrocarbon receptor dependent anti-inflammation and neuroprotective effects of tryptophan metabolites on retinal ischemia/reperfusion injury[J].Cell Death Dis,2023,14(2):92.
[67] LI H,BEHNAMMANESH G,WU Z,RONG R,YOU M,MAJID A S A,et al.Echium amoenum extract protects retinal ganglion cell after glutamate and optic nerve crush injury[J].Dis Markers,2022,2022:3631532.
[68] MOU Q,YAO K,YE M,ZHAO B,HU Y,LOU X,et al.Modulation of Sirt1-mTORC1 pathway in microglia attenuates retinal ganglion cell loss after optic nerve injury[J].J Inflamm Res,2021,14:6857-6869.
[69] TROST A,MOTLOCH K,KOLLER A,BRUCKNER D,RUNGE C,SCHROEDL F,et al.Inhibition of the cysteinyl leukotriene pathways increases survival of RGCs and reduces microglial activation in ocular hypertension[J].Exp Eye Res,2021,213:108806.
[70] ZHANG Z,PENG S,XU T,LIU J,ZHAO L,XU H,et al.Retinal microenvironment-protected rhein-GFFYE nanofibers attenuate retinal ischemia-reperfusion injury via inhibiting oxidative stress and regulating microglial/macrophage M1/M2 polarization[J].Adv Sci,2023,10(30):e2302909.
[71] LI S,JAKOBS T C.Vitamin C protects retinal ganglion cells via SPP1 in glaucoma and after optic nerve damage[J].Life Sci Alliance,2023,6(8):e202301976.
[72] FAZEL M F,ABU I F,MOHAMAD M H N,AGARWAL R,IEZHITSA I,BAKAR N S,et al.Philanthotoxin-343 attenuates retinal and optic nerve injury,and protects visual function in rats with N-methyl-D-aspartate-induced excitotoxicity[J].PLoS One,2020,15(7):e0236450.
[73] WANG C,AN Y,XIA Z,ZHOU X,LI H,SONG S,et al.The neuroprotective effect of melatonin in glutamate excitotoxicity of R28 cells and mouse retinal ganglion cells[J].Front Endocrinol,2022,13:986131.
[74] HU X,ZHUANG D,ZHANG R,SUN X,LU Q,DAI Y.The small molecule inhibitor PR-619 protects retinal ganglion cells against glutamate excitotoxicity[J].Neuroreport,2020,31(16):1134-1141.
[75] HANN YIH T,ABD GHAPOR A A,AGARWAL R,RAZALI N,IEZHITSA I,MOHD ISMAIL N.Effect of trans-resveratrol on glutamate clearance and visual behaviour in rats with glutamate induced retinal injury[J].Exp Eye Res,2022,220:109104.
[76] LOU X,HU Y,ZHANG H,LIU J,ZHAO Y.Polydopamine nanoparticles attenuate retina ganglion cell degeneration and restore visual function after optic nerve injury[J].J Nanobiotechnology,2021,19(1):436.
[77] ZHU J,LI P,ZHOU Y G,YE J.Altered energy metabolism during early optic nerve crush injury:implications of warburg-like aerobic glycolysis in facilitating retinal ganglion cell survival[J].Neurosci Bull,2020,36(7):761-777.
[78] WEN Y T,HUANG C W,LIU C P,CHEN C H,TU C M,HWANG C S,et al.Inhibition of retinal ganglion cell loss by a novel ROCK inhibitor (E212) in ischemic optic nerve injury via antioxidative and anti-inflammatory actions[J].Invest Ophthalmol Vis Sci,2021,62(6):21.
[79] NISHIJIMA E,NAMEKATA K,KIMURA A,GUO X,HARADA C,NORO T,et al.Topical ripasudil stimulates neuroprotection and axon regeneration in adult mice following optic nerve injury[J].Sci Rep,2020,10(1):15709.
[80] MORI S,KURIMOTO T,MAEDA H,NAKAMURA M.Dimethyl fumarate promotes the survival of retinal ganglion cells after optic nerve injury,possibly through the Nrf2/HO-1 pathway[J].Int J Mol Sci,2020,22(1):297.
[81] SHIN H A,PARK M,LEE H J,DUONG V A,KIM H M,HWANG D Y,et al.Unveiling neuroprotection and regeneration mechanisms in optic nerve injury:insight from neural progenitor cell therapy with focus on Vps35 and Syntaxin12[J].Cells,2023,12(19):2412.
[82] ZHONG H,YU H,CHEN B,GUO L,XU X,JIANG M,et al.Protective effect of total Panax notoginseng saponins on retinal ganglion cells of an optic nerve crush injury rat model[J].Biomed Res Int,2021,2021:4356949.
[83] PARK M,SHIN H A,DUONG V A,LEE H,LEW H.The role of extracellular vesicles in optic nerve injury:neuroprotection and mitochondrial homeostasis[J].Cells,2022,11(23):3720.
[84] WILLIAMS P A,HARDER J M,FOXWORTH N E,COCHRAN K E,PHILIP V M,PORCIATTI V,et al.Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice[J].Science,2017,355(6326):756-760.
[85] HUI F,TANG J,WILLIAMS P A,MCGUINNESS M B,HADOUX X,CASSON R J,et al.Improvement in inner retinal function in glaucoma with nicotinamide (vitamin B3) supplementation:a crossover randomized clinical trial[J].Clin Exp Ophthalmol,2020,48(7):903-914.
[86] CHANG K C,LIU P F,CHANG C H,LIN Y C,CHEN Y J,SHU C W.The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases[J].Cell Biosci,2022,12(1):1.

相似文献/References:

[1]李翔 谢钊 郭红建 谢学军 路雪婧 王毅 王超.补肾活血中药对大鼠慢性高眼压模型外侧膝状体病理改变的影响[J].眼科新进展,2012,32(1):000.
[2]范虹 刘五存 蔡鸿英 赵堪兴.改良二极管激光睫状体光凝术治疗中晚期青光眼[J].眼科新进展,2012,32(4):000.
[3]王建萍 赵燕麟 马勇 朱涛 程燕 车选义 赵桂娥 王柯.噻吗洛尔和布林佐胺联合曲伏前列素治疗原发性开角型青光眼与高眼压患者的临床研究[J].眼科新进展,2012,32(5):000.
[4]彭坤 靳隽 杨玉新 许银霞 王保君 闫义涛 杨华.长期联合应用噻吗洛尔对结膜组织炎性标记物ICAM-1和HLA-DR表达的影响[J].眼科新进展,2012,32(6):000.
[5]马恩普 赵小钊 董良 刘苏冰 曾照年.Healaflow在青光眼小梁切除术中的应用[J].眼科新进展,2012,32(6):000.
[6]王勇 叶应嘉 鲍先议 周龑丽 许荣 彭婷婷 曾志富.同轴微小切口超声乳化吸出术在青光眼滤过术后白内障摘出术中的应用[J].眼科新进展,2012,32(7):000.
[7]李翔 马世勇 李娟 王毅.补肾活血中药对大鼠慢性高眼压模型视神经病理改变的影响[J].眼科新进展,2013,33(2):000.
[8]白东娥 刘伟 季建.抗青光眼药物对青光眼患者泪液胰岛素水平的影响及其与眼表改变的关系[J].眼科新进展,2013,33(6):000.
[9]马英慧 张铁民 齐建平.原发性开角型青光眼与慢性原发性闭角型青光眼视网膜神经纤维层厚度与视野缺损的关系[J].眼科新进展,2013,33(7):000.
[10]张海涛 杨玉新 毛永 丁晓丽 秦海霞 梁长华 郭英昌.青光眼与非炎症性缺血型视神经病变的傅立叶OCT扫描视神经形态学对比[J].眼科新进展,2013,33(8):000.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(编号:82171026);四川省科技厅计划项目(编号:2022NSFSC0385)
更新日期/Last Update: 2024-07-05