[1]令倩,肖轶尘,邵毅.人工智能在儿童眼科疾病诊断中的应用[J].眼科新进展,2024,44(6):487-493.[doi:10.13389/j.cnki.rao.2024.0094]
 LING Qian,XIAO Yichen,SHAO Yi.Application of artificial intelligence in the diagnosis of pediatric eye diseases[J].Recent Advances in Ophthalmology,2024,44(6):487-493.[doi:10.13389/j.cnki.rao.2024.0094]
点击复制

人工智能在儿童眼科疾病诊断中的应用/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
44卷
期数:
2024年6期
页码:
487-493
栏目:
文献综述
出版日期:
2024-06-03

文章信息/Info

Title:
Application of artificial intelligence in the diagnosis of pediatric eye diseases
作者:
令倩肖轶尘邵毅
330006 江西省南昌市,南昌大学第一附属医院眼科(令倩,邵毅);200031 上海市,复旦大学附属眼耳鼻喉科医院眼科(肖轶尘)
Author(s):
LING Qian1XIAO Yichen2SHAO Yi1
1.Department of Ophthalmology, the First Affiliated Hospital of Nanchang University,Nanchang 330006,Jiangxi Province, China
2.Department of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031,China
关键词:
人工智能机器学习儿童眼科
Keywords:
artificial intelligence machine learning children ophthalmology
分类号:
R770.4
DOI:
10.13389/j.cnki.rao.2024.0094
文献标志码:
A
摘要:
近年来,眼科领域人工智能研究进展迅速,但在解决儿童眼科问题方面的应用却鲜少关注。目前,早产儿视网膜病变的自动检测系统诊断准确度已达到专家水平。人工智能已被应用于儿童白内障的病变分类鉴别、白内障术后并发症预测、高度近视进展预测以及斜视和屈光不正的自动检测。此外,人工智能可应用于视觉发育研究、儿童眼底图像血管发育分割以及眼科图像合成等诸多方面。这些技术在儿童眼科领域的应用能显著提高疾病诊断的准确度与治疗效率,同时对临床护理改善具有很大帮助。本文就人工智能在早产儿视网膜病变、儿童阅读障碍、幼儿视力筛查、弱视、斜视、屈光不正、儿童白内障等疾病诊断中的应用、不足之处以及未来的发展方向进行综述。
Abstract:
Artificial intelligence (AI) has made major strides in ophthalmology in recent years. Yet, its application in resolving children’s ocular problems has received limited attention. The automated detection system for retinopathy of prematurity has achieved expert-level accuracy in diagnosis. AI has been applied to categorize cataract abnormalities in children, forecast postoperative complications of cataracts, predict the progression of high myopia, and automatically detect strabismus and refractive error. Additionally, AI has also been utilized in visual development research, segmentation of vascular development in children’s fundus images, and the synthesis of ophthalmic images. Applying AI technologies in pediatric ophthalmology can greatly enhance the accuracy of disease diagnosis and the efficiency of treatment and improve clinical care. This article reviews the application, shortcomings and future development of AI in the diagnosis of retinopathy of prematurity, dyslexia in children, pediatric vision screening, amblyopia, strabismus, ametropia, and childhood cataracts.

参考文献/References:

[1] TING D S W,PASQUALE L R,PENG L,CAMPBELL J P,LEE A Y,RAMAN R,et al.Artificial intelligence and deep learning in ophthalmology[J].Br J Ophthalmol,2019,103(2):167-175.
[2] LEE A,TAYLOR P,KALPATHY-CRAMER J,TUFAIL A.Machine learning has arrived![J].Ophthalmology,2017,124(12):1726-1728.
[3] CAIXINHA M,NUNES S.Machine learning techniques in clinical vision sciences[J].Curr Eye Res,2017,42(1):1-15.
[4] BROWN J M,CAMPBELL J P,BEERS A,CHANG K,OSTMO S,PAUL CHAN R V P,et al.Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks[J].JAMA Ophthalmol,2018,136(7):803-810.
[5] LU W,TONG Y,YU Y,XING Y,CHEN C,SHEN Y.Applications of artificial intelligence in ophthalmology:general overview[J].J Ophthalmol,2018,2018:5278196.
[6] AN L,JAN C L,FENG J,WANG Z,ZHAN L,XU X.Inequity in access:cataract surgery throughput of Chinese ophthalmologists from the China national eye care capacity and resource survey[J].Ophthalmic Epidemiol,2020,27(1):29-38.
[7] QUINN G E.Retinopathy of prematurity blindness worldwide:phenotypes in the third epidemic[J].Eye Brain,2016,8:31-36.
[8] 黎彪,丁雅珺,邵毅.人工智能在小儿眼科领域的应用研究进展[J].国际眼科杂志,2020,20(8):1363-1366.
LI B,DING Y J,SHAO Y.Research progress on application of artificial intelligence in pediatric ophthalmology[J].Int Eye Sci,2020,20(8):1363-1366.
[9] 邵毅,吴康瑞,叶蕾.干眼的发病机制及治疗研究进展[J].眼科新进展,2020,40(4):301-306.
SHAO Y,WU K R,YE L.Recent advance in dry eye pathogenesis and treatment[J].Rec Adv Ophthalmol,2020,40(4):301-306.
[10] 邵毅,王珊珊,袁晴.糖尿病黄斑水肿诊治规范:2018欧洲视网膜专家协会指南解读[J].国际眼科杂志,2020,20(1):1-3.
SHAO Y,WANG S S,YUAN Q.European Society of Retina Specialists guidelines for management of diabetic macular edema[J].Int Eye Sci,2020,20(1):1-3.
[11] 邵毅,周琼.糖尿病视网膜病变诊治规范:2018年美国眼科学会临床指南解读[J].眼科新进展,2019,39(6):501-506.
SHAO Y,ZHOU Q.Interpretation of clinical guidelines for diabe-tic retinopathy of the American Academy of Ophthalmology 2018[J].Rec Adv Ophthalmol,2019,39(6):501-506.
[12] 邵毅.青光眼诊断与治疗规范:2017年英国专家共识解读[J].眼科新进展,2018,38(11):1001-1004.
SHAO Y.Standardized glaucoma treatment:interpretation of 2017 diagnostic and management guidelines of glaucoma by the British National Institute for Health and Care Excellence(NICE)[J].Rec Adv Ophthalmol,2018,38(11):1001-1004.
[13] PATERSON N,WATERHOUSE P.Risk in pediatric anesthesia[J].Paediatr Anaesth,2011,21(8):848-857.
[14] MORRISON D,BOTHUN E D,YING G S,DANIEL E,BAUMRITTER A,QUINN G.Impact of number and quality of retinal images in a telemedicine screening program for ROP:results from the e-ROP study[J].J AAPOS,2016,20(6):481-485.
[15] STEINKULLER P G,DU L,GILBERT C,FOSTER A,COLLINS M L,COATS D K.Childhood blindness[J].J Am Assoc Pediatr Ophthalmol Strabismus,1999,3(1):26-32.
[16] GILBERT C.Retinopathy of prematurity:a global perspective of the epidemics,population of babies at risk and implications for control[J].Early Hum Dev,2008,84(2):77-82.
[17] BOLN-CANEDO V,ATAER-CANSIZOGLU E,ERDOGMUS D,KALPATHY-CRAMER J,FONTENLA-ROMERO O,ALONSO-BETANZOS A,et al.Dealing with inter-expert variability in retinopathy of prematurity:a machine learning approach[J].Comput Methods Programs Biomed,2015,122(1):1-15.
[18] ATAER-CANSIZOGLU E,KALPATHY-CRAMER J,YOU S,KECK K,ERDOGMUS D,CHIANG M F.Analysis of underlying causes of inter-expert disagreement in retinopathy of prematurity diagnosis.Application of machine learning principles[J].Methods Inf Med,2015,54(1):93-102.
[19] MORAL-PUMAREGA M T,CASERO-CARBONERO S,DE-LA-CRUZ-BRTOLO J,TEJADA-PALACIOS P,LORA-PABLOS D,PALLS-ALONSO C R.Pain and stress assessment after retinopathy of prematurity screening examination:indirect ophthalmoscopy versus digital retinal imaging[J].BMC Pediatr,2012,12:132.
[20] GILBERT C,WORMALD R,FIELDER A,DEORARI A,ZEPEDA-ROMERO L C,QUINN G,et al.Potential for a paradigm change in the detection of retinopathy of prematurity requiring treatment[J].Arch Dis Child Fetal Neonatal Ed,2016,101(1):F6-F9.
[21] CAPOWSKI J J,KYLSTRA J A,FREEDMAN S F.A numeric index based on spatial frequency for the tortuosity of retinal vessels and its application to plus disease in retinopathy of prematurity[J].Retina,1995,15(6):490-500.
[22] HENEGHAN C,FLYNN J,O’KEEFE M,CAHILL M.Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis[J].Med Image Anal,2002,6(4):407-429.
[23] TAO J,HUANG X,QIU F,WANG C,JIANG J,SHENE C K,et al.Vessel map[J].Comput Graph,2016,59:79-92.
[24] WALLACE D K,ZHAO Z,FREEDMAN S F.A pilot study using “ROPtool” to quantify plus disease in retinopathy of prematurity[J].J AAPOS,2007,11(4):381-387.
[25] GELMAN R,JIANG L,DU Y E,MARTINEZ-PEREZ M E,FLYNN J T,CHIANG M F.Plus disease in retinopathy of prematurity:pilot study of computer-based and expert diagnosis[J].J AAPOS,2007,11(6):532-540.
[26] SWANSON C,COCKER K D,PARKER K H,MOSELEY M J,FIELDER A R.Semiautomated computer analysis of vessel growth in preterm infants without and with ROP[J].Br J Ophthalmol,2003,87(12):1474-1477.
[27] GELMAN R,MARTINEZ-PEREZ M E,VANDERVEEN D K,MOSKOWITZ A,FULTON A B.Diagnosis of plus disease in retinopathy of prematurity using Retinal Image multiScale Analysis[J].Invest Ophthalmol Vis Sci,2005,46(12):4734-4738.
[28] SHAH D N,WILSON C M,YING G S,KARP K A,FIELDER A R,NG J,et al.Semiautomated digital image analysis of posterior pole vessels in retinopathy of prematurity[J].J AAPOS,2009,13(5):504-506.
[29] WILSON C M,COCKER K D,MOSELEY M J,PATERSON C,CLAY S T,SCHULENBURG W E,et al.Computerized analysis of retinal vessel width and tortuosity in premature infants[J].Invest Ophthalmol Vis Sci,2008,49(8):3577-3585.
[30] OLOUMI F,RANGAYYAN R M,ELLS A L.Quantification of the changes in the openness of the major temporal arcade in retinal fundus images of preterm infants with plus disease[J].Invest Ophthalmol Vis Sci,2014,55(10):6728-6735.
[31] HE Y,WANG Y,WEI L,LI X,YANG J,ZHANG Y.Improving retinal image quality using registration with an SIFT algorithm in quasi-confocal line scanning ophthalmoscope[J].Adv Exp Med Biol,2017,977:183-190.
[32] REDD T K,CAMPBELL J P,BROWN J M,KIM S J,OSTMO S,CHAN R V P,et al.Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity[J].Br J Ophthalmol,2018:bjophthalmol-bjophtha2018-313156.
[33] WANG J,JU R,CHEN Y,ZHANG L,HU J,WU Y,et al.Automated retinopathy of prematurity screening using deep neural networks[J].EBioMedicine,2018,35:361-368.
[34] ATAER-CANSIZOGLU E,BOLON-CANEDO V,CAMPBELL J P,BOZKURT A,ERDOGMUS D,KALPATHY-CRAMER J,et al.Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity:performance of the “i-ROP” system and image features associated with expert diagnosis[J].Transl Vis Sci Technol,2015,4(6):5.
[35] WEISS K,KHOSHGOFTAAR T M,WANG D.A survey of transfer learning[J].J Big Data,2016,3(1):9.
[36] CHING T,HIMMELSTEIN D S,BEAULIEU-JONES B K,KALININ A A,DO B T,WAY G P,et al.Opportunities and obstacles for deep learning in biology and medicine[J].J R Soc Interface,2018,15(141):20170387.
[37] GOOD W V.Final results of the Early Treatment for Retinopathy of Prematurity (ETROP) randomized trial[J].Trans Am Ophthalmol Soc,2004,102:233-248.
[38] RELLO L,BALLESTEROS M.Detecting readers with dyslexia using machine learning with eye tracking measures[C]//Proceedings of the 12th International Web for All Conference.ACM,2015:1-8.
[39] NILSSON BENFATTO M,QVIST SEIMYR G,YGGE J,PANSELL T,RYDBERG A,JACOBSON C.Screening for dyslexia using eye tracking during reading[J].PLoS ONE,2016,11(12):e0165508.
[40] PASCOLINI D,MARIOTTI S P.Global estimates of visual impairment:2010[J].Br J Ophthalmol,2012,96(5):614-618.
[41] BRMOND-GIGNAC D,COPIN H,LAPILLONNE A,MILAZZO S,European Network of Study and Research in Eye Development.Visual development in infants:physiological and pathological mechanisms[J].Curr Opin Ophthalmol,2011,22(Suppl):S1-S8.
[42] TEOH L J,SOLEBO A L,RAHI J S.Temporal trends in the epidemiology of childhood severe visual impairment and blindness in the UK[J].Br J Ophthalmol,2023,107(5):717-724.
[43] BLAIKIE A J,DUTTON G N.How to assess eyes and vision in infants and preschool children[J].BMJ,2015,350:h1716.
[44] CHEN W,LI R,YU Q,XU A,FENG Y,WANG R,et al.Early detection of visual impairment in young children using a smartphone-based deep learning system[J].Nat Med,2023,29(2):493-503.
[45] LONG E,LIU Z,XIANG Y,XU A,HUANG J,HUANG X,et al.Discrimination of the behavioural dynamics of visually impaired infants via deep learning[J].Nat Biomed Eng,2019,3(11):860-869.
[46] ABADI R V,BJERRE A.Motor and sensory characteristics of infantile nystagmus[J].Br J Ophthalmol,2002,86(10):1152-1160.
[47] MUNSON M C,PLEWMAN D L,BAUMER K M,HENNING R,ZAHLER C T,KIETZMAN A T,et al.Autonomous early detection of eye disease in childhood photographs[J].Sci Adv,2019,5(10):eaax6363.
[48] GUPTA J,PATRICK J,POON S.Clinical safety incident taxonomy performance on C4.5 decision tree and random forest[J].Stud Health Technol Inform,2019,266:83-88.
[49] MOJON-AZZI S M,MOJON D S.Strabismus and employment:the opinion of headhunters[J].Acta Ophthalmol,2009,87(7):784-788.
[50] MOJON-AZZI S M,KUNZ A,MOJON D S.The perception of strabismus by children and adults[J].Graefes Arch Clin Exp Ophthalmol,2011,249(5):753-757.
[51] TENRIO ALBUQUERQUE MADRUGA MESQUITA M J,AZEVEDO VALENTE T L,DE ALMEIDA J D S,MEIRELES TEIXEIRA J A,MAC CORD MEDINA F,DOS SANTOS A M.A mhealth application for automated detection and diagnosis of strabismus[J].Int J Med Inform,2021,153:104527.
[52] LIU Y A,KO M W,MOSS H E.Telemedicine for neuro-ophthalmology:challenges and opportunities[J].Curr Opin Neurol,2021,34(1):61-66.
[53] CHEN Z,FU H,LO W L,CHI Z.Strabismus recognition using eye-tracking data and convolutional neural networks[J].J Healthc Eng,2018,2018:7692198.
[54] IKUNO Y.Overview of the complications of high myopia[J].Retina,2017,37(12):2347-2351.
[55] CLARK T Y,CLARK R A.Atropine 0.01% eyedrops significantly reduce the progression of childhood myopia[J].J Ocul Pharmacol Ther,2015,31(9):541-545.
[56] LIN H,LONG E,DING X,DIAO H,CHEN Z,LIU R,et al.Prediction of myopia development among Chinese school-aged children using refraction data from electronic medical records:a retrospective,multicentre machine learning study[J].PLoS Med,2018,15(11):e1002674.
[57] LIU X,JIANG J,ZHANG K,LONG E,CUI J,ZHU M,et al.Localization and diagnosis framework for pediatric cataracts based on slit-lamp images using deep features of a convolutional neural network[J].PLoS ONE,2017,12(3):e0168606.
[58] LIN H,LI R,LIU Z,CHEN J,YANG Y,CHEN H,et al.Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics:a multicentre randomized controlled trial[J].EClinical Medicine,2019,9:52-59.
[59] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Commun ACM,2017,60(6):84-90.
[60] ZHANG K,LIU X,JIANG J,LI W,WANG S,LIU L,et al.Prediction of postoperative complications of pediatric cataract patients using data mining[J].J Transl Med,2019,17(1):2.
[61] KRAUSE J,GULSHAN V,RAHIMY E,KARTH P,WIDNER K,CORRADO G S,et al.Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy[J].Ophthalmology,2018,125(8):1264-1272.
[62] JIANG J,LIU X,ZHANG K,LONG E,WANG L,LI W,et al.Automatic diagnosis of imbalanced ophthalmic images using a cost-sensitive deep convolutional neural network[J].Biomed Eng Online,2017,16(1):132.
[63] JIANG J,LEI S,ZHU M,LI R,YUE J,CHEN J,et al.Improving the generalizability of infantile cataracts detection via deep learning-based lens partition strategy and multicenter datasets[J].Front Med,2021,8:664023.
[64] GARGEYA R,LENG T.Automated identification of diabetic retinopathy using deep learning[J].Ophthalmology,2017,124(7):962-969.
[65] KERMANY D S,GOLDBAUM M,CAI W,VALENTIM C C S,LIANG H,BAXTER S L,et al.Identifying medical diagnoses and treatable diseases by image-based deep learning[J].Cell,2018,172(5):1122-1131.e9.
[66] 孙铁,张雨晴,邵毅.人工智能及其在眼科疾病诊疗中的应用[J].眼科新进展,2020,40(8):793-796,800.
SUN T,ZHANG Y Q,SHAO Y.The application of artificial intelligence on ophthalmic diseases[J].Rec Adv Ophthalmol,2020,40(8):793-796,800.
[67] LEE C S,BAUGHMAN D M,LEE A Y.Deep learning is effective for classifying normal versus age-related macular degeneration OCT images[J].Ophthalmol Retina,2017,1(4):322-327.
[68] KLIMSCHA S,WALDSTEIN S M,SCHLEGL T,BOGUNOVIC H,SADEGHIPOUR A,PHILIP A M,et al.Spatial correspondence between intraretinal fluid,subretinal fluid,and pigment epithelial detachment in neovascular age-related macular degeneration[J].Invest Ophthalmol Vis Sci,2017,58(10):4039-4048.
[69] ROHM M,TRESP V,MLLER M,KERN C,MANAKOV I,WEISS M,et al.Predicting visual acuity by using machine learning in patients treated for neovascular age-related macular degeneration[J].Ophthalmology,2018,125(7):1028-1036.
[70] BOGUNOVIC H,MONTUORO A,BARATSITS M,KARANTONIS M G,WALDSTEIN S M,SCHLANITZ F,et al.Machine learning of the progression of intermediate age-related macular degeneration based on OCT imaging[J].Invest Ophthalmol Vis Sci,2017,58(6):141-150.
[71] ROMOND K,ALAM M,KRAVETS S,SISTERNES L,LENG T,LIM J I,et al.Imaging and artificial intelligence for progression of age-related macular degeneration[J].Exp Biol Med,2021,246(20):2159-2169.
[72] MARTIN K R,MANSOURI K,WEINREB R N,WASILEWICZ R,GISLER C,HENNEBERT J,et al.Use of machine learning on contact lens sensor-derived parameters for the diagnosis of primary open-angle glaucoma[J].Am J Ophthalmol,2018,194:46-53.
[73] STORS A M,STRMKE I,RIEGLER M A,GRAUSLUND J,HAMMER H L,YAZIDI A,et al.Artificial intelligence in dry eye disease[J].Ocul Surf,2022,23:74-86.
[74] ZHANG Z Z,KUANG R F,WEI Z Y,WANG L Y,SU G Y,OU Z H,et al.Detection of the spontaneous blinking pattern of dry eye patients using the machine learning method[J].Chin J Ophthalmol,2022,58(2):120-129.
[75] 《人工智能在干眼临床诊断中的应用专家共识(2023)》专家组,中国医药教育协会眼科影像与智能医疗分会,中国人口文化促进会角膜病与眼表疾病分会.人工智能在干眼临床诊断中的应用专家共识(2023)[J].眼科新进展,2023,43(4):253-259.
Expert Consensus on Clinical Application of Artificial Intelligence in Dry Eyes (2023) Expert Group,Ophthalmic Imaging and Intelligent Medicine Branch of China Medical Education Association,Corneal and Ocular Surface Diseases Branch of Chinese Population and Society Promotion Association.Expert consensus on clinical application of artificial intelligence in dry eye (2023)[J].Rec Adv Ophthalmol,2023,43(4):253-259.
[76] HWANG E S,PEREZ-STRAZIOTA C E,KIM S W,SANTHIAGO M R,RANDLEMAN J B.Distinguishing highly asymmetric keratoconus eyes using combined scheimpflug and spectral-domain OCT analysis[J].Ophthalmology,2018,125(12):1862-1871.
[77] CLARKE G P,BURMEISTER J.Comparison of intraocular lens computations using a neural network versus the Holladay formula[J].J Cataract Refract Surg,1997,23(10):1585-1589.
[78] EDWARDS T L,XUE K,MEENINK H C M,BEELEN M J,NAUS G J L,SIMUNOVIC M P,et al.First-in-human study of the safety and viability of intraocular robotic surgery[J].Nat Biomed Eng,2018,2:649-656.
[79] MAJI D,SANTARA A,GHOSH S,SHEET D,MITRA P.Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images[J].Annu Int Conf IEEE Eng Med Biol Soc,2015,2015:3029-3032.
[80] NG J,CLAY S T,BARMAN S A,FIELDER A R,MOSELEY M J,PARKER K H,et al.Maximum likelihood estimation of vessel parameters from scale space analysis[J].Image Vis Comput,2010,28(1):55-63.
[81] POPLIN R,VARADARAJAN A V,BLUMER K,LIU Y,MCCONNELL M V,CORRADO G S,et al.Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning[J].Nat Biomed Eng,2018,2(3):158-164.
[82] ZHAO H,LI H,MAURER-STROH S,CHENG L.Synthesizing retinal and neuronal images with generative adversarial nets[J].Med Image Anal,2018,49:14-26.
[83] FINLAYSON S G,LEE H,KOHANE I,OAKDEN-RAYNER L.Towards generative adversarial networks as a new paradigm for radiology education[J].arXiv E-Prints,2018,1812:01547.
[84] BEERS A,BROWN J,CHANG K,CAMPBELL J P,OSTMO S,CHIANG M F,et al.High-resolution medical image synthesis using progressively grown generative adversarial networks[J].arXiv E-Prints,2018,1805:03144.
[85] FRAZ M M,RUDNICKA A R,OWEN C G,BARMAN S A.Delineation of blood vessels in pediatric retinal images using decision trees-based ensemble classification[J].Int J Comput Assist Radiol Surg,2014,9(5):795-811.
[86] OWEN C G,RUDNICKA A R,MULLEN R,BARMAN S A,MONEKOSSO D,WHINCUP P H,et al.Measuring retinal vessel tortuosity in 10-year-old children:validation of the Computer-Assisted Image Analysis of the Retina (CAIAR) program[J].Invest Ophthalmol Vis Sci,2009,50(5):2004-2010.
[87] MONDLOCH C J,SEGALOWITZ S J,LEWIS T L,DYWAN J,LE GRAND R,MAURER D.The effect of early visual deprivation on the development of face detection[J].Dev Sci,2013,16(5):728-742.
[88] GRADY C L,MONDLOCH C J,LEWIS T L,MAURER D.Early visual deprivation from congenital cataracts disrupts activity and functional connectivity in the face network[J].Neuropsychologia,2014,57:122-139.
[89] VOGELSANG L,GILAD-GUTNICK S,EHRENBERG E,YONAS A,DIAMOND S,HELD R,et al.Potential downside of high initial visual acuity[J].Proc Natl Acad Sci USA,2018,115(44):11333-11338.
[90] RUDER S.An overview of multi-task learning in deep neural networks[J].arXiv E-Prints,2017,1706:05098.
[91] CHIANG M F,JIANG L,GELMAN R,DU Y E,FLYNN J T.Interexpert agreement of plus disease diagnosis in retinopathy of prematurity[J].Arch Ophthalmol,2007,125(7):875-880.
[92] WALLACE D K,QUINN G E,FREEDMAN S F,CHIANG M F.Agreement among pediatric ophthalmologists in diagnosing plus and pre-plus disease in retinopathy of prematurity[J].J AAPOS,2008,12(4):352-356.
[93] 杨卫华,邵毅,许言午.眼科人工智能临床研究评价指南(2023) [J].国际眼科杂志,2023,23 (7):1064-1071.
YANG W H,SHAO Y,XU Y W.Guidelines on clinical research evaluation of artificial intelligence in ophthalmology(2023)[J].Int Eye Sci,2023,23(7):1064-1071.
[94] CHANNA R,WOLF R,ABRAMOFF M D.Autonomous artificial intelligence in diabetic retinopathy:from algorithm to clinical application[J].J Diabetes Sci Technol,2021,15(3):695-698.
[95] DOSHI-VELEZ F,KIM B.Towards A rigorous science of interpretable machine learning[J].arXiv E-Prints,2017,1702:08608.
[96] VALDES G,LUNA J M,EATON E,SIMONE C B,UNGAR L H,SOLBERG T D.MediBoost:a patient stratification tool for interpretable decision making in the era of precision medicine[J].Sci Rep,2016,6:37854.
[97] CELI L A,CITI L,GHASSEMI M,POLLARD T J.The PLoS ONE collection on machine learning in health and biomedicine:towards open code and open data[J].PLoS ONE,2019,14(1):e0210232.
[98] NIKOLAIDOU A,TSAOUSIS K T.Teleophthalmology and artificial intelligence As game changers in ophthalmic care after the COVID-19 pandemic[J].Cureus,2021,13(7):e16392.

相似文献/References:

[1]余燕,侯银芬,吴昌凡,等.人工智能深度学习技术在常见眼病辅助诊断的应用现状和进展[J].眼科新进展,2020,40(4):396.[doi:10.13389/j.cnki.rao.2020.0092]
 YU Yan,HOU Yinfen,WU Changfan,et al.Application and progress of artificial intelligence deep learning technology in diagnosis of common eye diseases[J].Recent Advances in Ophthalmology,2020,40(6):396.[doi:10.13389/j.cnki.rao.2020.0092]
[2]孙铁,张雨晴,邵毅.人工智能及其在眼科疾病诊疗中的应用[J].眼科新进展,2020,40(8):793.[doi:10.13389/j.cnki.rao.2020.0181]
 SUN Tie,ZHANG Yuqing,SHAO Yi.The application of artificial intelligence on ophthalmic diseases[J].Recent Advances in Ophthalmology,2020,40(6):793.[doi:10.13389/j.cnki.rao.2020.0181]
[3]郑武,阮坤炜,吴天添,等.人工智能糖尿病视网膜病变筛查系统与眼科医师诊断结果的一致性分析[J].眼科新进展,2020,40(12):1170.[doi:10.13389/j.cnki.rao.2020.0260]
 ZHENG Wu,RUAN Kunwei,WU Tiantian,et al.Consistency of artificial intelligence screening system with ophthalmologist for diagnosing of diabetic retinopathy[J].Recent Advances in Ophthalmology,2020,40(6):1170.[doi:10.13389/j.cnki.rao.2020.0260]
[4]杨丽丹,李青蒨,陈倩茵,等.人工智能在青光眼诊断中的研究进展[J].眼科新进展,2023,43(6):500.[doi:10.13389/j.cnki.rao.2023.0102]
 YANG Lidan,LI Qingqian,CHEN Qianyin,et al.Research progress of artificial intelligence in the diagnosis of glaucoma[J].Recent Advances in Ophthalmology,2023,43(6):500.[doi:10.13389/j.cnki.rao.2023.0102]
[5]《人工智能在甲状腺相关性眼病中的应用指南(0)》专家组,中国医药教育协会眼科影像与智能医疗分会,中国医师协会眼科分会眼肿瘤专委会,等.人工智能在甲状腺相关性眼病中的应用指南(2023)[J].眼科新进展,2023,43(11):841.[doi:10.13389/j.cnki.rao.2023.0169]
 Expert Workgroup of Guidelines for the Application of Artificial Intelligence in Thyroid Associated Ophthalmopathy(0),Ophthalmic Imaging and Intelligent Medicine Branch of Chinese Medicine Education Association,Ocular Oncology Committee of the Ophthalmology Branch of the Chinese Medical Doctor Association,et al.Guidelines for the application of artificial intelligence in thyroid-associated ophthalmopathy (2023)[J].Recent Advances in Ophthalmology,2023,43(6):841.[doi:10.13389/j.cnki.rao.2023.0169]
[6]《人工智能在神经眼科疾病诊断中的应用指南(0)》专家组,中国医药教育协会眼科影像与智能医疗分会,国际转化医学会眼科专业委员会,等.人工智能在神经眼科疾病诊断中的应用指南(2023)[J].眼科新进展,2023,43(12):925.[doi:10.13389/j.cnki.rao.2023.0185]
 Expert Workgroup of Guidelines for Application of Artificial Intelligence in the diagnosis of neuro-ophthalmic diseases (0),Ophthalmic Imaging and Intelligent Medicine Branch of Chinese Medicine Education Association,Ophthalmology Committee of International Association of Translational Medicine,et al.Guidelines for the application of artificial intelligence in the diagnosis of neuro-ophthalmic diseases[J].Recent Advances in Ophthalmology,2023,43(6):925.[doi:10.13389/j.cnki.rao.2023.0185]
[7]任章军,余进海,桑泽曦,等.人工智能深度学习在眼眶病及眼肿瘤疾病诊疗中的应用研究现状[J].眼科新进展,2024,44(2):163.[doi:10.13389/j.cnki.rao.2024.0032]
 REN Zhangjun,YU Jinhai,SANG Zexi,et al.Research advancement of the application of artificial intelligence deep learning in the diagnosis and treatment of orbital diseases and ocular tumors[J].Recent Advances in Ophthalmology,2024,44(6):163.[doi:10.13389/j.cnki.rao.2024.0032]
[8]陈铭海,白芳,陶海.多模态数据融合技术及其在眼科领域的应用研究进展[J].眼科新进展,2024,44(3):248.[doi:10.13389/j.cnki.rao.2024.0049]
 CHEN Minghai,BAI Fang,TAO Hai.Multimodal data fusion and research progress of its application in ophthalmology[J].Recent Advances in Ophthalmology,2024,44(6):248.[doi:10.13389/j.cnki.rao.2024.0049]
[9]《人工智能在OCTA图像分析和眼部疾病诊断中的应用指南(0)》专家组,国际转化医学会眼科专业委员会,中国医药教育协会眼科影像与智能医疗分会.人工智能在OCTA图像分析和眼部疾病诊断中的应用指南(2024)[J].眼科新进展,2024,44(5):337.[doi:10.13389/j.cnki.rao.2024.0066]
 Expert Workgroup of Guidelines for Application of Artificial Intelligence in OCTA Image Analysis and Ocular Disease Diagnosis (0),Ophthalmic Imaging and Intelligent Medicine Branch of Chinese Medicine Education Association,Ophthalmology Committee of International Association of Translational Medicine.Guidelines for the application of artificial intelligence in optical coherence tomography angiography image analysis and ocular disease diagnosis (2024)[J].Recent Advances in Ophthalmology,2024,44(6):337.[doi:10.13389/j.cnki.rao.2024.0066]
[10]赵金凤,吴桢泉,郑磊,等.人工智能在眼科疾病诊疗的应用现状[J].眼科新进展,2019,39(5):495.[doi:10.13389/j.cnki.rao.2019.0114]
 ZHAO Jin-Feng,WU Zhen-Quan,ZHENG Lei,et al.Application of artificial intelligence in the diagnosis and treatment of ocular diseases[J].Recent Advances in Ophthalmology,2019,39(6):495.[doi:10.13389/j.cnki.rao.2019.0114]
[11]《人工智能在干眼临床诊断中的应用专家共识(0)》专家组,中国医药教育协会眼科影像与智能医疗分会,中国人口文化促进会角膜病与眼表疾病分会.人工智能在干眼临床诊断中的应用专家共识(2023)[J].眼科新进展,2023,43(4):253.[doi:10.13389/j.cnki.rao.2023.0052]
 Expert Consensus on Clinical Application of Artificial Intelligence in Dry Eyes (0) Expert Group,Ophthalmic Imaging and Intelligent Medicine Branch of China Medical Education Association,Corneal and Ocular Surface Diseases Branch of Chinese Population and Society Promotion Association.Expert consensus on clinical application of artificial intelligence in dry eyes (2023)[J].Recent Advances in Ophthalmology,2023,43(6):253.[doi:10.13389/j.cnki.rao.2023.0052]
[12]《人工智能辅助诊断早产儿视网膜病变应用指南(0)》专家组,中国医药教育协会眼科影像与智能医疗分会,国际转化医学会眼科专委会,等.人工智能辅助诊断早产儿视网膜病变应用指南(2023)[J].眼科新进展,2023,43(9):673.[doi:10.13389/j.cnki.rao.2023.0136]
 Expert Workgroup of Guidelines for the Application of Artificial Intelligence in Retinopathy of Premature Infants0,Ophthalmic Imaging and Intelligent Medicine Branch of Chinese Medicine Education Association,Ophthalmology Committee of International Association of Translational Medicine,et al.Guidelines for the application of artificial intelligence in the auxiliary diagnosis of retinopathy of prematurity (2023)[J].Recent Advances in Ophthalmology,2023,43(6):673.[doi:10.13389/j.cnki.rao.2023.0136]

备注/Memo

备注/Memo:
国家自然科学基金项目(编号:82160195)
更新日期/Last Update: 2024-06-05