[1]黄华发,刘东成,秦波.铁死亡在年龄相关性黄斑变性中的调控机制研究进展[J].眼科新进展,2023,43(11):914-919.[doi:10.13389/j.cnki.rao.2023.0183]
 HUANG Huafa,LIU Dongcheng,QIN Bo.Advances in the regulatory mechanism of ferroptosis in age-related macular degeneration[J].Recent Advances in Ophthalmology,2023,43(11):914-919.[doi:10.13389/j.cnki.rao.2023.0183]
点击复制

铁死亡在年龄相关性黄斑变性中的调控机制研究进展/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
43卷
期数:
2023年11期
页码:
914-919
栏目:
文献综述
出版日期:
2023-11-05

文章信息/Info

Title:
Advances in the regulatory mechanism of ferroptosis in age-related macular degeneration
作者:
黄华发刘东成秦波
518000 广东省深圳市,暨南大学第二临床医学院(黄华发,秦波);518032 广东省深圳市,暨南大学附属爱尔眼科医院(深圳)(刘东成,秦波);518000 广东省深圳市,深圳市爱尔眼科技术研究所(刘东成,秦波)
Author(s):
HUANG Huafa1LIU Dongcheng23QIN Bo123
1.The Second Clinical Medical College of Ji’nan University,Shenzhen 518000, Guangdong Province,China
2.The Shenzhen Aier Eye Hospital Affiliated to Ji’nan University,Shenzhen 518032, Guangdong Province,China
3.The Shenzhen Aier Ophthalmic Technology Institute,Shenzhen 518000,Guangdong Province,China
关键词:
铁死亡年龄相关性黄斑变性视网膜色素上皮细胞
Keywords:
ferroptosis age-related macular degeneration retinal pigment epithelial cell
分类号:
R774.5
DOI:
10.13389/j.cnki.rao.2023.0183
文献标志码:
A
摘要:
目的 铁死亡是一种以脂质过氧化为特征的调节性细胞死亡,在年龄相关性黄斑变性(AMD)中扮演重要角色。本文就AMD的病理机制、铁死亡过程及特征进行回顾,并从铁离子代谢途径、胱氨酸/谷氨酸逆向转运体途径、脂质代谢途径、核转录因子途径、自噬依赖性途径及免疫相关途径对铁死亡在AMD发生发展中的调控机制进行论述,最后归纳总结部分铁死亡抑制剂对视网膜色素上皮细胞的保护作用,为AMD的治疗提供新的思路。
Abstract:
Ferroptosis, a kind of regulated cell death characterized by lipid peroxidation, plays an important role in age-related macular degeneration (AMD). This article reviews the pathogenesis of AMD, ferroptosis process and characteristics, discusses the regulatory mechanism of ferroptosis in the occurrence and development of AMD from the iron metabolism pathway, cystine/glutamate reverse transporter pathway, lipid metabolism pathway, nuclear transcription factor pathway, autophagy-dependent pathway and immune-related pathway, and summarizes the protective effect of some ferroptosis inhibitors on retinal pigment epithelial cells, providing a new idea for the treatment of AMD.

参考文献/References:

[1] HIRSCHHORN T,STOCKWELL B R.The development of the concept of ferroptosis[J].Free Radic Biol Med,2019,133:130-143.
[2] ZHAO T, GUO X, SUN Y.Iron accumulation and lipid peroxidation in the aging retina:implication of ferroptosis in age-related macular degeneration[J].Aging Dis, 2021, 12(2):529-551.
[3] STAHL A.The diagnosis and treatment of age-related macular degeneration[J].Dtsch Arztebl Int, 2020, 117(29-30):513-520.
[4] VAN LOOKEREN CAMPAGNE M,LECOUTER J,YASPAN B L,YE W.Mechanisms of age-related macular degeneration and therapeutic opportunities[J].J Pathol, 2014, 232(2):151-164.
[5] DENG Y,QIAO L,DU M,QU C,WAN L,LI J,et al.Age-related macular degeneration:Epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy[J].Genes Dis, 2022, 9(1):62-79.
[6] KLEIN R,LI X,KUO J Z,KLEIN B E,COTCH M F,WONG T Y,et al.Associations of candidate genes to age-related macular degeneration among racial/ethnic groups in the multi-ethnic study of atherosclerosis[J].Am J Ophthalmol, 2013, 156(5):1010-1020.e1.
[7] SCHULTZ N M,BHARDWAJ S,BARCLAY C,GASPAR L,SCHWARTZ J.Global burden of dry age-related macular degeneration:a targeted literature review[J].Clin Ther,2021,43(10):1792-1818.
[8] FABRE M,MATEO L,LAMAA D,BAILLIF S,PAGS G,DEMANGE L,et al.Recent advances in age-related macular degeneration therapies[J].Molecules,2022, 27(16):5089.
[9] SUN Y,ZHENG Y,WANG C,LIU Y.Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells[J].Cell Death Dis,2018, 9(7):753.
[10] JIANG X,STOCKWELL B R,CONRAD M.Ferroptosis:mechanisms,biology and role in disease[J].Nat Rev Mol Cell Biol,2021,22(4):266-282.
[11] WEI T T,ZHANG M Y,ZHENG X H,XIE T H,WANG W,ZOU J,et al.Interferon-γinduces retinal pigment epithelial cell Ferroptosis by a JAK1-2/STAT1/SLC7A11 signaling pathway in Age-related Macular Degeneration[J].FEBS J,2022,289(7):1968-1983.
[12] HENNING Y,BLIND U S,LARAFA S,MATSCHKE J,FANDREY J.Hypoxia aggravates ferroptosis in RPE cells by promoting the Fenton reaction[J].Cell Death Dis, 2022,13(7):662.
[13] TANG D,CHEN X,KANG R,KROEMER G.Ferroptosis:molecular mechanisms and health implications[J].Cell Res,2021,31(2):107-125.
[14] LI J,CAO F,YIN H L,HUANG Z J,LIN Z T,MAO N,et al.Ferroptosis:past,present and future[J].Cell Death Dis,2020,11(2):88.
[15] KUMAR R,SONI R,HEINDL S E,WILTSHIRE D A,KHAN S.Unravelling the role of HSP70 as the unexplored molecular target in age-related macular degeneration[J].Cureus,2020,12(7):e8960.
[16] ZHAO X,GAO M,LIANG J,CHEN Y,WANG Y,WANG Y,et al.SLC7A11 reduces laser-induced choroidal neovascularization by inhibiting RPE ferroptosis and VEGF production[J].Front Cell Dev Biol,2021,9:639851.
[17] TANG Z,JU Y,DAI X,NI N,LIU Y,ZHANG D,et al.HO-1-mediated ferroptosis as a target for protection against retinal pigment epithelium degeneration[J].Redox Biol,2021,43:101971.
[18] TOTSUKA K,UETA T,UCHIDA T,ROGGIA M F,NAKAGAWA S,VAVVAS D G,et al.Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells[J].Exp Eye Res,2019,181:316-324.
[19] GHOSH S,STEPICHEVA N,YAZDANKHAH M,SHANG P,WATSON A M,HOSE S,et al.The role of lipocalin-2 in age-related macular degeneration (AMD)[J].Cell Mol Life Sci,2020,77(5):835-851.
[20] BARASCH J,HOLLMEN M,DENG R,HOD E A,RUPERT P B,ABERGEL R J,et al.Disposal of iron by a mutant form of lipocalin 2[J].Nat Commun,2016,7:12973.
[21] GUPTA U,GHOSH S,WALLACE C T,SHANG P,XIN Y,NAIR A P,et al.Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD[J].Autophagy,2023,19(1):92-111.
[22] BIASIZZO M,KOPITAR-JERALA N.Interplay between NLRP3 inflammasome and autophagy[J].Front Immunol,2020,11:591803.
[23] HYTTINEN J M T,VIIRI J,KAARNIRANTA K,BASIAK J.Mitochondrial quality control in AMD:does mitophagy play a pivotal role?[J].Cell Mol Life Sci,2018,75(16):2991-3008.
[24] WANG C,ZHANG R,WEI X,LV M,JIANG Z.Metalloimmunology:the metal ion-controlled immunity[J].Adv Immunol,2020,145:187-241.
[25] KOPPULA P,ZHANG Y,ZHUANG L,GAN B.Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer[J].Cancer Commun,2018,38(1):1-13.
[26] FORCINA G C,DIXON S J.GPX4 at the crossroads of lipid homeostasis and ferroptosis[J].Proteomics,2019,19(18):e1800311.
[27] ZHANG J,SHENG S,WANG W,DAI J,ZHONG Y,REN J,et al.Molecular mechanisms of iron mediated programmed cell death and its roles in eye diseases[J].Front Nutr,2022,9:844757.
[28] JIANG Y,DUAN L J,PI J,LE Y Z,FONG G H.Dependence of retinal pigment epithelium integrity on the NRF2-heme oxygenase-1 axis[J].Invest Ophthalmol Vis Sci,2022,63(9):30.
[29] CHANG L C,CHIANG S K,CHEN S E,YU Y L,CHOU R H,CHANG W C.Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis[J].Cancer Lett,2018, 416:124-137.
[30] CHEN C,YANG K,HE D,YANG B,TAO L,CHEN J,et al.Induction of ferroptosis by HO-1 contributes to retinal degeneration in mice with defective clearance of all-trans-retinal[J].Free Radic Biol Med,2023,194:245-254.
[31] SRIDEVI GURUBARAN I,VIIRI J,KOSKELA A,HYTTINEN J M T,PATERNO J J,KIS G,et al.Mitophagy in the retinal pigment epithelium of dry age-related macular degeneration investigated in the NFE2L2/PGC-1α-/-mouse model[J].Int J Mol Sci,2020,21(6):1976.
[32] ESCREVENTE C,FALCO A S,HALL M J,LOPES-DA-SILVA M,ANTAS P,MESQUITA M M,et al.Formation of lipofuscin-like autofluorescent granules in the retinal pigment epithelium requires lysosome dysfunction[J].Invest Ophthalmol Vis Sci,2021,62(9):39.
[33] LEE J R,JEONG K W.NMDA receptor antagonists degrade lipofuscin via autophagy in human retinal pigment epithelial cells[J].Medicina,2022,58(8):1129.
[34] ZHANG Z Y,BAO X L,CONG Y Y,FAN B,LI G Y.Autophagy in age-related macular degeneration:a regulatory mechanism of oxidative stress[J].Oxid Med Cell Longev,2020,2020:2896036.
[35] ZHAO L,LI Y,SONG D,SONG Y,THEURL M,WANG C,et al.A high serum iron level causes mouse retinal iron accumulation despite an intact blood-retinal barrier[J].Am J Pathol,2014,184(11):2862-2867.
[36] LIU J,KUANG F,KROEMER G,KLIONSKY D J,KANG R,TANG D.Autophagy-dependent ferroptosis:machinery and regulation[J].Cell Chem Biol,2020,27(4):420-435.
[37] SONG X,ZHU S,CHEN P,HOU W,WEN Q,LIU J,et al.AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system xc- activity[J].Curr Biol,2018,28(15):2388-2399.e5.
[38] SANTANA-CODINA N,GIKANDI A,MANCIAS J D.The role of NCOA4-mediated ferritinophagy in ferroptosis[J].Adv Exp Med Biol,2021,1301:41-57.
[39] PARK E,CHUNG S W.ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation[J].Cell Death Dis,2019,10(11):822.
[40] DATTA S,CANO M,SATYANARAYANA G,LIU T,WANG L,WANG J,et al.Mitophagy initiates retrograde mitochondrial-nuclear signaling to guide retinal pigment cell heterogeneity[J].Autophagy,2023,19(3):966-983.
[41] AMMAR M J,HSU J,CHIANG A,HO A C,REGILLO C D.Age-related macular degeneration therapy:a review[J].Curr Opin Ophthalmol,2020,31(3):215-221.
[42] YANG M,SO K F,LAM W C,LO A C Y.Novel programmed cell death as therapeutic targets in age-related macular degeneration?[J].Int J Mol Sci,2020,21(19):7279.
[43] RICCI F,BANDELLO F,NAVARRA P,STAURENGHI G,STUMPP M,ZARBIN M.Neovascular age-related macular degeneration:therapeutic management and new-upcoming approaches[J].Int J Mol Sci,2020,21(21):8242.
[44] SAKAMOTO K,SUZUKI T,TAKAHASHI K,KOGUCHI T,HIRAYAMA T,MORI A,et al.Iron-chelating agents attenuate NMDA-Induced neuronal injury via reduction of oxidative stress in the rat retina[J].Exp Eye Res,2018,171:30-36.
[45] PICARD E,DARUICH A,YOUALE J,COURTOIS Y,BEHAR-COHEN F.From rust to quantum biology:the role of iron in retina physiopathology[J].Cells,2020,9(3):705.
[46] OBOLENSKY A,BERENSHTEIN E,LEDERMAN M,BULVIK B,ALPER-PINUS R,YAUL R,et al.Zinc-desferrioxamine attenuates retinal degeneration in the rd10 mouse model of retinitis pigmentosa[J].Free Radic Biol Med,2011,51(8):1482-1491.
[47] CRISPONI G,NURCHI V M,LACHOWICZ J I.IRON CHELATION FOR IRON OVERLOAD IN THALASSEMIA[M]//CARVER P L.Essential Metals in Medicine:Therapeutic Use and Toxicity of Metal Ions in the Clinic.De Gruyter,2019:49-86.
[48] SHU W,DUNAIEF J L.Potential treatment of retinal diseases with iron chelators[J].Pharmaceuticals,2018,11(4):112.
[49] SHAHANDEH A,BUI B V,FINKELSTEIN D I,NGUYEN C T O.Effects of excess iron on the retina:insights from clinical cases and animal models of iron disorders[J].Front Neurosci,2022,15:794809.
[50] CUI Q N,BARGOUD A R,ROSS A G,SONG Y,DUNAIEF J L.Oral administration of the iron chelator deferiprone protects against loss of retinal ganglion cells in a mouse model of glaucoma[J].Exp Eye Res,2020,193:107961.
[51] SONG D,ZHAO L,LI Y,HADZIAHMETOVIC M,SONG Y,CONNELLY J,et al.The oral iron chelator deferiprone protects against systemic iron overload-induced retinal degeneration in hepcidin knockout mice[J].Invest Ophthalmol Vis Sci,2014,55(7):4525-4532.
[52] PAN Y,KEANE P A,SADUN A A,FAWZI A A.Optical coherence tomography findings in deferasirox-related maculopathy[J].RETINAL Cases Brief Rep,2010,4(3):229-232.

相似文献/References:

[1]范姜砾 王雨生 张鹏.湿性年龄相关性黄斑变性患者血浆中相关抗氧化酶水平测定[J].眼科新进展,2012,32(5):000.
[2]王毅 李罗翔 李娟 曾庆华.ApoE基因缺失小鼠视网膜及Bruch膜组织形态观察[J].眼科新进展,2013,33(1):000.
[3]徐新荣 仲路 黄冰林 魏源华 周欣 王玲 王富强.年龄相关性黄斑变性血浆蛋白质组学初步研究[J].眼科新进展,2013,33(2):000.
[4]党亚龙 陈彬川 穆雅林 赵满丽 朱豫.i-MP对产生2型脉络膜新生血管的年龄相关性黄斑变性患者视力及黄斑厚度的影响[J].眼科新进展,2013,33(2):000.
[5]王毅 李罗翔 李进辉 李娟 曾庆华.血脂异常ApoE基因缺失小鼠视网膜色素上皮细胞胞浆内黑色素和脂褐素的改变[J].眼科新进展,2013,33(7):000.
[6]罗文婷 孙大卫.血管黏附蛋白-1在眼科疾病中的研究进展[J].眼科新进展,2013,33(8):000.
[7]陆秉文 吴星伟.光动力疗法治疗年龄相关性黄斑变性的研究进展[J].眼科新进展,2013,33(4):000.
[8]栾兰 姚勇.湿性年龄相关性黄斑变性的治疗进展[J].眼科新进展,2013,33(4):000.
[9]胡艳红 祁明信 郭娜 陈胜 柯发杰.渗出型年龄相关性黄斑变性患者外周血CCR3的表达[J].眼科新进展,2013,33(11):000.
[10]金鑫,张红.MicroRNA在年龄相关性黄斑变性发病中的作用[J].眼科新进展,2014,34(8):787.[doi:10.13389/j.cnki.rao.2014.0218]
 JIN Xin,ZHANG Hong.Role of microRNA in pathogenesis of agerelated macular degeneration[J].Recent Advances in Ophthalmology,2014,34(11):787.[doi:10.13389/j.cnki.rao.2014.0218]

备注/Memo

备注/Memo:
广东省自然科学基金(编号:2022A1515010742);爱尔眼科医院集团科研基金(编号AM2101D1)
更新日期/Last Update: 2023-11-05