[1]郑卓涛,张凌月,封炎,等.低浓度阿托品滴眼液对近视儿童青少年视网膜与脉络膜厚度及微循环的影响[J].眼科新进展,2023,43(11):887-892.[doi:10.13389/j.cnki.rao.2023.0178]
 ZHENG Zhuotao,ZHANG Lingyue,FENG Yan,et al.Effect of low-concentration atropine eyedrops on retinal and choroidal thickness and microcirculation in children and adolescents with myopia[J].Recent Advances in Ophthalmology,2023,43(11):887-892.[doi:10.13389/j.cnki.rao.2023.0178]
点击复制

低浓度阿托品滴眼液对近视儿童青少年视网膜与脉络膜厚度及微循环的影响/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
43卷
期数:
2023年11期
页码:
887-892
栏目:
应用研究
出版日期:
2023-11-05

文章信息/Info

Title:
Effect of low-concentration atropine eyedrops on retinal and choroidal thickness and microcirculation in children and adolescents with myopia
作者:
郑卓涛张凌月封炎卢红薇欧阳子婧刘诗宇徐丽雯邓燕殷小龙
330008 江西省南昌市,南昌大学第二附属医院眼科中心
Author(s):
ZHENG ZhuotaoZHANG LingyueFENG YanLU HongweiOUYANG ZijingLIU ShiyuXU LiwenDENG YanYIN Xiaolong
Ophthalmologic Center,the Second Affiliated Hospital of Nanchang University,Nanchang 330008,Jiangxi Province,China
关键词:
阿托品滴眼液近视光学相干断层扫描血管成像脉络膜视网膜微血管系统黄斑部视网膜
Keywords:
atropine eyedrops myopia optical coherence tomography angiography choroid retinal microvascular system retinal macula
分类号:
R778.1+1
DOI:
10.13389/j.cnki.rao.2023.0178
文献标志码:
A
摘要:
目的 研究0.1 g·L-1低浓度阿托品滴眼液对近视儿童青少年脉络膜、视网膜厚度(RT)及血管系统的影响,分析低浓度阿托品影响近视的机制。
方法 选取经散瞳检影验光等效球镜(SE)≤-0.50 D的近视儿童青少年123例,随机分为用药组(白天配戴框架眼镜,每晚0.1 g·L-1低浓度阿托品滴眼1 滴)70例以及对照组(仅白天配戴框架眼镜)61例。两组患儿基线时进行SE、眼轴长度(AL)、眼压(IOP)、黄斑中心凹下脉络膜厚度(SFCT)、浅层血管复合体(SVC)、深层血管复合体(DVC)及脉络膜毛细血管(CC)血流密度、RT等检查,并在3个月和6个月时进行两次随访和检查数据比较。
结果 两组患儿基线年龄、性别比、IOP、SE、AL、SFCT、黄斑部微血管系统(SVC 、DVC 及CC)血流密度及平均RT比较,差异均无统计学意义(均为P>0.05)。两组患儿随访3个月和6个月时的SE、AL及SFCT比较,差异均有统计学意义(均为P<0.05)。与基线数据相比,对照组患儿随访6个月时的AL增长,用药组患儿随访3个月和6个月时的SFCT均增厚,差异均有统计学意义(均为P<0.05)。用药组患儿3个月、6个月随访时SVC 、DVC 及CC血流密度均高于对照组及基线数据,差异均有统计学意义(均为P<0.05)。用药组患儿与对照组比较,3个月、6个月随访时内环鼻侧RT较厚,6个月随访时外环上侧及外环鼻侧RT较厚,3个月、6个月随访时外环颞侧RT较厚,差异均有统计学意义(均为P<0.05)。
结论 近视儿童青少年局部使用0.1 g·L-1低浓度阿托品滴眼液可以改善视网膜脉络膜微循环,使脉络膜明显增厚,视网膜轻度增厚,从而延缓近视的进展。
Abstract:
Objective To explore the effect of 0.1 g·L-1 low-concentration atropine eyedrops on choroidal and retinal thickness (RT) and vascular system in children and adolescents with myopia and analyze the mechanism by which the low-concentration atropine affects myopia.
Methods A total of 123 myopic children and adolescents with spherical equivalent (SE) less than or equal to -0.50 D were selected and randomly divided into the medication group (70 patients, wearing framed glasses during the day and dripping one drop of 0.1 g·L-1 low-concentration atropine eyedrops per night) and the control group (61 patients, only wearing framed glasses during the day). At baseline, SE, axial length (AL), intraocular pressure (IOP), subfoveal choroidal thickness (SFCT), superficial vascular complex (SVC), deep vascular complex (DVC) and choroidal capillary (CC) vessel density (VD), and RT were examined. Two follow-up checks were performed three and six months after treatment, and examination results were compared.
Results There was no statistically significant difference in baseline age, gender ratio, IOP, SE, AL, SFCT, VD in the macular microvascular system (SVC, DVC and CC) and mean RT between the two groups (all P>0.05). Significant difference was found in SE, AL and SFCT between the two groups three and six months after treatment (all P<0.05). Compared with baseline data, the AL in the control group increased six months after treatment, and the SFCT in the medication group increased three and six months after treatment (all P<0.05). The VDs in SVC, DVC and CC in the medication group were higher than those in the control group and baseline data three and six months after treatment (all P<0.05). Compared with the control group, the RT on the nasal side of the inner ring and on the temporal side of the outer ring increased three and six months after treatment, and the RT on the superior and nasal sides of the outer ring increased six months after treatment in the medication group (all P<0.05).
Conclusion Local use of 0.1 g·L-1 low-concentration atropine eyedrops in children and adolescents with myopia can improve the retinal and choroidal microcirculation, causing significant thickening of the choroid and mild thickening of the retina, thereby delaying the progression of myopia.

参考文献/References:

[1] HOLDEN B A,FRICKE T R,WILSON D A,JONG M,NAIDOO K S,SANKARIDURG P,et al.Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J].Ophthalmology,2016,123(5):1036-1042.
[2] BULLIMORE M A,RITCHEY E R,SHAH S,LEVEZIEL N,BOURNE R R A,FLITCROFT D I.The risks and benefits of myopia control[J].Ophthalmology,2021,128(11):1561-1579.
[3] HA A,KIM S J,SHIM S R,KIM Y K,JUNG J H.Efficacy and safety of 8 atropine concentrations for myopia control in children:a network meta-analysis[J].Ophthalmology,2022,129(3):322-333.
[4] SANKARIDURG P,CONRAD F,TRAN H,ZHU J.Controlling progression of myopia:optical and pharmaceutical strategies[J].Asia Pac J Ophthalmol(Phila),2018,7(6):405-414.
[5] ARUMUGAM B,MCBRIEN N A.Muscarinic antagonist control of myopia:evidence for M4 and M1Receptor-based pathways in the inhibition of experimentally-induced axial myopia in the tree shrew[J].Invest Ophthalmol Vis Sci,2012,53(9):5827.
[6] SAMBHAV K,GROVER S,CHALAM K V.The application of optical coherence tomography angiography in retinal diseases[J].Surv Ophthalmol,2017,62(6):838-866.
[7] LE P H,PATEL B C.Optical Coherence Tomography Angiography[M].StatPearls:Treasure Island (FL),2022.
[8] LARSEN H O,GRAUSLUND J,VERGMANN A S.Efficacy,durability and safety of faricimab in neovascular age-related macular degeneration and diabetic macular oedema:lessons learned from registration trials[J].Ophthalmol Ther,2023,12(5):2253-2264.
[9] LANDRENEAU J R,HESEMANN N P,CARDONELL M A.Review on the myopia pandemic:epidemiology,risk factors,and prevention[J].Mo Med,2021,118(2):156-163.
[10] BAIRD P N,SAW S M,LANCA C,GUGGENHEIM J A,SMITH III E L,ZHOU X,et al.Myopia[J].Nat Rev Dis Primers,2020,6(1):99.
[11] HASHEMI H,FOTOUHI A,YEKTA A,PAKZAD R,OSTADIMOGHADDAM H,KHABAZKHOOB M.Global and regional estimates of prevalence of refractive errors:systematic review and meta-analysis[J].J Curr Ophthalmol,2018,30(1):3-22.
[12] TKATCHENKO T V,TKATCHENKO A V.Pharmacogenomic approach to antimyopia drug development:pathways lead the way[J].Trends Pharmacol Sci,2019,40(11):833-852.
[13] LI F F,KAM K W,ZHANG Y,TANG S M,YOUNG A L,CHEN L J,et al.Differential effects on ocular biometrics by 0.05%,0.025%,and 0.01% atropine:low-concentration atropine for myopia progression study[J].Ophthalmology,2020,127(12):1603-1611.
[14] JETHANI J.Efficacy of low-concentration atropine (0.01%) eye drops for prevention of axial myopic progression in premyopes[J].Indian J Ophthalmol,2022,70(1):238-240.
[15] CHIA A,CHUA W H,CHEUNG Y B,WONG W L,LINGHAM A,FONG A,et al.Atropine for the treatment of childhood myopia:safety and efficacy of 0.5%,0.1%,and 0.01% doses (Atropine for the Treatment of Myopia 2)[J].Ophthalmology,2012,119(2):347-354.
[16] LEE L C,HSIEH M W,CHEN Y H,CHEN P L,CHIEN K H.Characteristics of responders to atropine 0.01% as treatment in Asian myopic children[J].Sci Rep,2022,12(1):7380.
[17] DENG J,LI X,JIN J,ZHANG B,ZHU J,ZOU H,et al.Distribution pattern of choroidal thickness at the posterior pole in Chinese children with myopia[J].Invest Ophthalmol Vis Sci,2018,59(3):1577-1586.
[18] READ S A,FUSS J A,VINCENT S J,COLLINS M J,ALONSO-CANEIRO D.Choroidal changes in human myopia:insights from optical coherence tomography imaging[J].Clin Exp Optom,2019,102(3):270-285.
[19] PROUSALI E,DASTIRIDOU A,ZIAKAS N,ANDROUDI S,MATAFTSI A.Choroidal thickness and ocular growth in childhood[J].Surv Ophthalmol,2021,66(2):261-275.
[20] MATHIS U,FELDKAEMPER M P,SCHAEFFEL F.Effects of single and repeated intravitreal applications of atropine on choroidal thickness in alert chickens[J].Ophthalmic Res,2021,64(4):664-674.
[21] ZHANG Z,ZHOU Y,XIE Z,CHEN T,GU Y,LU S,et al.The effect of topical atropine on the choroidal thickness of healthy children[J].Sci Rep,2016,6:34936.
[22] YAM J C,JIANG Y,LEE J,LI S,ZHANG Y,SUN W,et al.The association of choroidal thickening by atropine with treatment effects for myopia:two-year clinical trial of the low-concentration atropine for myopia progression (LAMP) study[J].Am J Ophthalmol,2022,237:130-138.
[23] HAO Q,ZHAO Q.Changes in subfoveal choroidal thickness in myopic children with 0.01% atropine,orthokeratology,or their combination [J].Int Ophthalmol,2021,41(9):2963-2971.
[24] YE L,SHI Y,YIN Y,LI S,HE J,ZHU J,et al.Effects of atropine treatment on choroidal thickness in myopic children[J].Invest Ophthalmol Vis Sci,2020,61(14):15.
[25] MENG Y,YI Z H,XU Y S,HE L,LI L,CHEN C Z.Changes in macular vascular density and retinal thickness in young myopic adults without pathological changes:an OCTA study[J].Eur Rev Med Pharmacol Sci,2022,26(16):5736-5744.
[26] LIM H T,CHUN B Y.Comparison of OCT measurements between high myopic and low myopic children[J].Optom Vis Sci,2013,90(12):1473-1478.
[27] KOCER A M,GOKER Y S,SOGUT F E.The effect of pathological retinal changes on retinal capillary circulation in myopic patients[J].Beyoglu Eye,2022,7(4):282-290.
[28] BARRIO-BARRIO J,NOVAL S,GALDóS M,RUIZ-CANELA M,BONET E,CAPOTE M,et al.Multicenter Spanish study of spectral-domain optical coherence tomography in normal children[J].Acta Ophthalmol,2013,91(1):e56-e63.
[29] CARR B J,MIHARA K,RAMACHANDRAN R,SAIFEDDINE M,NATHANSON N M,STELL W K,et al.Myopia-inhibiting concentrations of muscarinic receptor antagonists block activation of Alpha2A-adrenoceptors in vitro[J].Invest Ophthalmol Vis Sci,2018,59(7):2778-2791.
[30] ZHOU X,PARDUE M T,IUVONE P M,QU J.Dopamine signaling and myopia development:what are the key challenges[J].Prog Retin Eye Res,2017,61:60-71.
[31] CARR B J,STELL W K.Nitric oxide (NO) mediates the inhibition of form-deprivation myopia by atropine in chicks[J].Sci Rep,2016,6(1):9.
[32] MATHIS U,FELDKAEMPER M,WANG M,SCHAEFFEL F.Studies on retinal mechanisms possibly related to myopia inhibition by atropine in the chicken[J].Graefes Arch Clin Exp Ophthalmol,2020,258(2):319-333.
[33] YANG Y,WANG J,JIANG H,YANG X,FENG L,HU L,et al.Retinal microvasculature alteration in high myopia[J].Invest Ophthalmol Vis Sci,2016,57(14):6020-6030.
[34] LI M,YANG Y,JIANG H,GREGORI G,ROISMAN L,ZHENG F,et al.Retinal microvascular network and microcirculation assessments in high myopia[J].Am J Ophthalmol,2017,174:56-67.
[35] GOEBIEWSKA J,BIAA-GOSEK K,CZESZYK A,HAUTZ W.Optical coherence tomography angiography of superficial retinal vessel density and foveal avascular zone in myopic children[J].PLoS One,2019,14(7):e0219785.
[36] KHANAL S,RATHOD S N,PHILLIPS J R.The acute effect of atropine eye drops on the human full-field electroretinogram[J].Doc Ophthalmol,2021,142(3):315-328.

相似文献/References:

[1]计垣.近视的分子遗传学研究进展[J].眼科新进展,2012,32(6):000.
[2]张卫霞 曾照年 唐秀侠 孙宏霞 李洪润.Zywave波前像差仪在近视屈光不正测量中的应用[J].眼科新进展,2012,32(7):000.
[3]闵红波 刘小红 花雷 韩文龙 储明慧 邵娟英.近视对OCT测量视网膜神经纤维层厚度的影响[J].眼科新进展,2012,32(12):000.
[4]刘太祥 李海祥 石容 王铮.ORK程序中两种切削模式治疗近视术后角膜像差变化及对视觉功能的影响[J].眼科新进展,2013,33(1):000.
[5]陈月芹 黄振平 薛春燕 葛轶睿.有晶状体眼虹膜固定型人工晶状体植入术后房角宽度的改变[J].眼科新进展,2013,33(6):000.
[6]王凌飞 杨瑞波 赵少贞.CACHET有晶状体眼人工晶状体植入术后视觉质量的临床评价[J].眼科新进展,2013,33(6):000.
[7]胡裕坤 李文静 高晓唯 董晶 郭云林.飞秒激光微小切口角膜基质透镜切除术治疗近视对角膜波前像差的影响[J].眼科新进展,2013,33(7):000.
[8]许瑶 曾骏文.近视眼药物治疗研究进展[J].眼科新进展,2013,33(7):000.
[9]汤勇 刘才远.LASIK、Epi-LASIK、SBK、Fem-LASIK及SMILE术中角膜切削误差的对比研究[J].眼科新进展,2013,33(9):000.
[10]吴玉伟 李筱荣 张琰 赵雅丽 王晓燕.无酒精LASEK治疗近视和近视散光的临床疗效[J].眼科新进展,2013,33(9):000.

备注/Memo

备注/Memo:
江西省科学技术厅重点项目(编号:20202BBG72004);学科交叉创新基金一般项目(编号:9166-27060003-YB18);南昌大学二附院临床科研专项(编号:2019YNLZ12001)
更新日期/Last Update: 2023-11-05