[1]叶蓉,张秋阳,张荟颖,等.不同类型脉络膜新生血管患者对抗VEGF药物治疗应答的差异性[J].眼科新进展,2022,42(12):952-956.[doi:10.13389/j.cnki.rao.2022.0195]
 YE Rong,ZHANG Qiuyang,ZHANG Huiying,et al.Differences in responses to anti-vascular endothelial growth factor drugs of patients with different types of choroidal neovascularization[J].Recent Advances in Ophthalmology,2022,42(12):952-956.[doi:10.13389/j.cnki.rao.2022.0195]
点击复制

不同类型脉络膜新生血管患者对抗VEGF药物治疗应答的差异性/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
42卷
期数:
2022年12期
页码:
952-956
栏目:
应用研究
出版日期:
2022-12-05

文章信息/Info

Title:
Differences in responses to anti-vascular endothelial growth factor drugs of patients with different types of choroidal neovascularization
作者:
叶蓉张秋阳张荟颖曹原蒋沁
210000 江苏省南京市,南京医科大学附属眼科医院
Author(s):
YE RongZHANG QiuyangZHANG HuiyingCAO YuanJIANG Qin
The Affiliated Eye Hospital of Nanjing Medical University,Nanjng 210000,Jiangsu Province,China
关键词:
病理性近视脉络膜新生血管视网膜色素上皮细胞抗血管内皮生长因子
Keywords:
pathological myopia choroidal neovascularization retinal pigment epithelium cells anti-vascular endothelial growth factor
分类号:
R773.4
DOI:
10.13389/j.cnki.rao.2022.0195
文献标志码:
A
摘要:
目的 探讨不同类型脉络膜新生血管(CNV)患者对抗血管内皮生长因子(VEGF)药物治疗应答的差异性。方法 本研究为回顾性研究。选取2016年10月至2021年9月在我院门诊确诊并接受康柏西普治疗的CNV患者50例68眼。依据CNV类型将患者分成3组,I型CNV组患者16例20眼,II型CNV组患者25例35眼,混合型CNV组患者9例13眼。采用德国海德堡公司共焦激光同步血管造影系统的增强扫描技术扫描获得患者黄斑中心凹脉络膜厚度(SFCT),记录患者治疗前后相应时间点的最佳矫正视力(BCVA) (logMAR),记录治疗后不同时间患者注药次数、需再治疗眼数和患者CNV复发率等。采用SPSS 23.0统计学软件对所得数据进行统计分析。结果 II型CNV组患者治疗后1周、1个月及2个月的BCVA较基线提高量高于I型CNV组和混合型CNV组,差异均有统计学意义(均为P<0.05);混合型CNV组患者治疗后6个月、8个月及12个月BCVA较基线提高量低于I型CNV组和II型CNV组,差异均有统计学意义(均为P<0.05)。三组患者治疗后SFCT较基线均有所提高,差异均有统计学意义(均为P<0.05)。混合型CNV组患者治疗后8个月、12个月的SFCT较基线恢复厚度低于I型CNV组和II型CNV组,差异均有统计学意义(均为P<0.05)。随访0~24个月,三组患者总注药次数差异有统计学意义(P<0.05),SNK-q检验结果显示:I型CNV组及II型CNV组患者注药次数少于混合型CNV组(均为P<0.05)。三组患者需再治疗眼率差异有统计学意义(P<0.05);混合型CNV组患者需再治疗眼率高于I型CNV组及II型CNV组[需再治疗眼数率差95%CI分别为(0.051,0.133)和(0.041,0.142)]。三组患者注药后复发率差异无统计学意义(P>0.05)。结论 II型CNV在抗VEGF治疗早期应答更好,而II型CNV及I型CNV在治疗后期应答反应趋于相近;混合型CNV在治疗后期应答不良。
Abstract:
Objective To investigate the different responses to anti-vascular endothelial growth factor (anti-VEGF) drugs of patients with various types of choroidal neovascularization (CNV). Methods This study was a retrospective study. A total of 50 patients (68 eyes) who were diagnosed with CNV and treated with Conbercept in the Outpatient Department of our hospital from October 2016 to September 2021 were included. The patients were divided into 3 groups according to the type of CNV: 16 patients (20 eyes) in the type I CNV group, 25 patients (35 eyes) in the type II CNV group, and 9 patients (13 eyes) in the mixed CNV group. Subfoveal choroidal thickness (SFCT) was measured by enhanced scanning of confocal laser synchronous angiography system (Heidelberg Engineering, Germany). The best corrected visual acuity (BCVA) (logMAR) was recorded at corresponding times before and after treatment. The number of injections, the number of eyes requiring retreatment, and the recurrence rate of CNV were recorded at different times after treatment. SPSS 23.0 was used for statistical analysis. Results The improved values of BCVA compared to the baseline in the type II CNV group at 1 week, 1 month and 2 months after treatment were higher than those of the type I CNV group and mixed CNV group, and the differences were statistically significant (all P<0.05). The improved values of BCVA compared to the baseline of the mixed CNV group at 6 months, 8 months and 12 months were lower than those of the type I CNV group and type II CNV group, and the differences were statistically significant (all P<0.05). After treatment, the SFCTs of patients in the three groups were significantly improved compared with the baseline (all P<0.05). The SFCT improved values compared to the baseline of patients in the mixed CNV group at 8 months and 12 months were lower than those of the type I CNV group and type II CNV group with significant differences (all P<0.05). During the follow-up period of 24 months, there were significant differences in the total number of drug injections among the three groups (P<0.05). The Student-Newman-Keuls q test showed that the number of drug injections in the type I CNV group and type II CNV group was significantly less than that in the mixed CNV group (both P<0.05). The differences in the rate of eyes requiring retreatment among the three groups were statistically significant (P<0.05). The mixed CNV group had more retreated eyes than the type I CNV group and the type II CNV group [the 95% confidence interval of rate differences of eyes requiring retreatment were (0.051, 0.133) and (0.041, 0.142) respectively]. There was no significant difference in the recurrence rate among the three groups after therapy (P>0.05). Conclusion Type II CNV group has a best response in the early stage of anti-VEGF treatment; type II CNV group and type I CNV group tend to have a similar response in the late stage of treatment. The mixed CNV group shows a poor response in the late stage of treatment.

参考文献/References:

[1] DOLZ-MARCO R,PHASUKKIJWATANA N,SARRAF D,FREUND K B.Regression of type 2 neovascularization into a type 1 pattern after intravitreal anti-vascular endothelial growth factor therapy for neovascular age-related macular degeneration[J].Retina,2017,37(2):222-233.
[2] NAKANO Y,KATAOKA K,TAKEUCHI J,FUJITA A,KANEKO H,SHIMIZU H,et al.Vascular maturity of type 1 and type 2 choroidal neovascularization evaluated by optical coherence tomography angiography[J].PLoS One,2019,14(4):e0216304.
[3] KIM J M,CHO H J,KIM Y,JUNG S H,LEE D W,KIM J W.Responses of types 1 and 2 neovascularization in age-related macular degeneration to anti-vascular endothelial growth factor treatment:optical coherence tomography angiography analysis[J].Semin Ophthalmol,2019,34(3):168-176.
[4] TERASAKI H,SAKAMOTO T,SHIRASAWA M,YOSHIHARA N.Penetration of bevacizumab and ranibizumab through retinal pigment epithelial layer in vitro[J].Retina,2015,35(5):1007-1015.
[5] SHEU S J,SAKAMOTO T,OSUSKY R,WANG H M,OGDEN T E,RYAN S J,et al.Transforming growth factor-beta regulates human retinal pigment epithelial cell phagocytosis by influencing a protein kinase c-dependent pathway[J].Graefes Arch Clin Exp Ophthalmol,1994,232(11):695-701.
[6] CHEUNG C M G,OHNO-MATSUI K,WONG T Y,LI T,ASMUS F,LEAL S,et al.Influence of myopic macular degeneration severity on treatment outcomes with intravitreal aflibercept in the MYRROR study[J].Acta Ophthalmol,2019,97(5):e729-e735.
[7] CALVO-GONZLEZ C,RECHE-FRUTOS J,FERNNDEZ-VIGO J I,SENZ-FRANCS F,FERNNDEZ-PREZ C,GARCA-FEIJO J.Long-term outcomes of two different initial dosing regimens of intravitreal ranibizumab used to treat myopic choroidal neovascularization[J].Ophthalmologica,2017,238(4):196-204
[8] LI S,DING X,SUN L,ZHAO X,ZHANG A,LYU C,et al.Two different initial treatment regimens of ranibizumab in myopic choroidal neovascularization:12-month results from a randomized controlled study[J].Clin Exp Ophthalmol,2019,47(2):250-258.
[9] CHEN Y,HAN X,GORDON I,SAFI S,LINGHAM G,EVANS J,et al.A systematic review of clinical practice guidelines for myopic macular degeneration[J].J Glob Health,2022,12:04026.
[10] SEO K H ,YU S Y,KIM M,KWAK H W.Visual and morphologic outcomes of intravitreal ranibizumab for diabetic macular edema based on optical coherence tomography patterns[J].Retina,2016,36(3):588-595.
[11] FANG Y,DU R,NAGAOKA N,YOKOI T,SHINOHARA K,XU X,et al.OCT-based diagnostic criteria for different stages of myopic maculopathy[J].Ophthalmology,2019,126(7):1018-1032.
[12] CARMELIET P,JAIN R K.Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases[J].Nat Rev Drug Discov,2011,10(6):417-27.
[13] KORN C,AUGUSTIN H G.Mechanisms of vessel pruning and regression[J].Dev Cell,2015,34(1):5-17.
[14] KIM D Y,FINGLER J,ZAWADZKI R J,PARK S S,MORSE L S,SCHWARTZ D M,et al.Optical imaging of the chorioretinal vasculature in the living human eye[J].Proc Natl Acad Sci USA,2013,110(35):14354-14359.
[15] JIANG B,GAO L,DONG S,HOU Q X,SUN M H,ZHANG J J,et al.The influence of COVID-19 on the stability of patients with neovascular age-related macular degeneration with different treatment regimens[J].Adv Ther,2022,39(4):1568-1581.
[16] SPAIDE R F.Optical coherence tomography angiography signs of vascular a normalization with antiangiogenic therapy for choroidal neovascularization[J].Am J Ophthalmol,2015,160(1):6-16.
[17] LEVINE E S,CUSTO GREIG E,MENDONA L S,GULATI S,DESPOTOVIC I N,ALIBHAI A Y,et al.The long-term effects of anti-vascular endothelial growth factor therapy on the optical coherence tomography angiographic appearance of neovascularization in age-related macular degeneration[J].Int J Retina Vitreous,2020,6(1):39.
[18] DU R,XIE S,IGARASHI-YOKOI T,WATANABE T,URAMOTO K,TAKAHASHI H,et al.Continued increase of axial length and its risk factors in adults with high myopia[J].JAMA Ophthalmol,2021,139(10):1096-1103.
[19] CHO H J,LIM S H,KIM J,LEE J,LEE D W,KIM J W.Assessing the long-term evolution of type 3 neovascularization in age-related macular degeneration using optical coherence tomography angiography[J].Graefes Arch Clin Exp Ophthalmol,2021,259(9):2605-2613.

相似文献/References:

[1]党亚龙 陈彬川 穆雅林 赵满丽 朱豫.i-MP对产生2型脉络膜新生血管的年龄相关性黄斑变性患者视力及黄斑厚度的影响[J].眼科新进展,2013,33(2):000.
[2]许瑶 曾骏文.近视眼药物治疗研究进展[J].眼科新进展,2013,33(7):000.
[3]许琴 黄亮 林素香 郑水华 肖煜晨 王雅丽.激光诱导小鼠脉络膜新生血管中膜攻击物与血管生长因子的表达[J].眼科新进展,2013,33(8):000.
[4]詹文捷 梁丽娜 唐由之.骨髓来源细胞参与脉络膜新生血管形成的研究进展[J].眼科新进展,2012,32(1):000.
[5]陈丽娟 苗林.重组人血管内皮抑素对脉络膜新生血管的抑制作用[J].眼科新进展,2012,32(10):000.
[6]栾兰 姚勇.湿性年龄相关性黄斑变性的治疗进展[J].眼科新进展,2013,33(4):000.
[7]常远 王雨生 曹丰 张健 蔡岩 李鹤一 侯慧媛.在体生物发光成像术观察骨髓来源细胞参与脉络膜新生血管的形成[J].眼科新进展,2013,33(5):000.
[8]雷润佳 胡丹 张鹏 孙丽娟 白倩 闵捷.缺氧对人视网膜色素上皮细胞促血管生成素-1和促血管生成素-2表达的影响[J].眼科新进展,2013,33(5):000.
[9]王晓霞 史志洁 林娜 刘晓瑞.光学相干断层扫描在病理性近视黄斑裂孔中的应用[J].眼科新进展,2013,33(9):000.
[10]胡艳红 祁明信 郭娜 陈胜 柯发杰.渗出型年龄相关性黄斑变性患者外周血CCR3的表达[J].眼科新进展,2013,33(11):000.
[11]金昱 石安娜 刘维锋 石浔 王永波.频域OCT在光动力疗法治疗病理性近视脉络膜新生血管中的应用[J].眼科新进展,2012,32(10):000.
[12]黄志坚 宋艳萍 金中秋 丁琴 陈中山.光动力疗法联合玻璃体内注射Bevacizumab治疗病理性近视合并脉络膜新生血管[J].眼科新进展,2013,33(4):000.
[13]陆秉文,吴星伟. Ranibizumab玻璃体内注射治疗病理性近视脉络膜新生血管研究进展[J].眼科新进展,2014,34(9):897.[doi:10.13389/j.cnki.rao.2014.0248]
[14]丁雯芝,邹俊.病理性近视脉络膜新生血管发病机制的研究进展[J].眼科新进展,2014,34(10):987.[doi:10.13389/j.cnki.rao.2014.0274]
[15]田楠楠,亢泽峰,张庆.加减驻景方对病理性近视脉络膜新生血管动物模型血管内皮生长因子及色素上皮衍生因子表达的影响[J].眼科新进展,2015,35(10):906.[doi:10.13389/j.cnki.rao.2015.0247]
 TIAN Nan-Nan,KANG Ze-Feng,ZHANG Qing.Effects of modified Zhu Jing prescriptions on expression of VEGF and PEDF in pathologic myopia with choroidal neovascularization animal model[J].Recent Advances in Ophthalmology,2015,35(12):906.[doi:10.13389/j.cnki.rao.2015.0247]
[16]修立恒,李佳林,李常栋,等.玻璃体内注射雷珠单抗治疗病理性近视合并脉络膜新生血管疗效观察[J].眼科新进展,2015,35(11):1067.[doi:10.13389/j.cnki.rao.2015.0292]
 XIU Li-Heng,LI Jia-Lin,LI Chang-Dong,et al.Pathological myopia combined with choroidal neovascularization treated by intravitreal injection of ranibizumab[J].Recent Advances in Ophthalmology,2015,35(12):1067.[doi:10.13389/j.cnki.rao.2015.0292]
[17]刘李平,宋徽,冀垒兵,等.玻璃体内注射雷珠单抗治疗病理性近视黄斑部脉络膜新生血管[J].眼科新进展,2016,36(7):667.[doi:10.13389/j.cnki.rao.2016.0177]
 LIU Li-Ping,SONG Hui,JI Lei-Bing,et al.Intravitreal ranibizumab injections for pathologic myopia macular choroidal neovascularization[J].Recent Advances in Ophthalmology,2016,36(12):667.[doi:10.13389/j.cnki.rao.2016.0177]
[18]孙早荷,万光明,钱诚,等.玻璃体内注射雷珠单抗治疗病理性近视继发脉络膜新生血管[J].眼科新进展,2018,38(10):925.[doi:10.13389/j.cnki.rao.2018.0219]
 SUN Zao-He,WAN Guang-Ming,QIAN Cheng,et al.Efficacy of intravitreal ranibizumab for the treatment of choroidal neovascularization secondary to pathological myopia[J].Recent Advances in Ophthalmology,2018,38(12):925.[doi:10.13389/j.cnki.rao.2018.0219]
[19]陈丛,闫明,宋艳萍.康柏西普对病理性近视脉络膜新生血管的疗效及视力预后相关性研究[J].眼科新进展,2020,40(6):569.[doi:10.13389/j.cnki.rao.2020.0131]
 CHEN Cong,YAN Ming,SONG Yanping.Efficacy of Conbercept for treatment of choroidal neovascularization with pathologic myopia and on visual prognosis[J].Recent Advances in Ophthalmology,2020,40(12):569.[doi:10.13389/j.cnki.rao.2020.0131]

备注/Memo

备注/Memo:
国家自然科学基金资助(编号:82070983)
更新日期/Last Update: 2022-12-05