[1]万光明,薛瑢.从视网膜氧化应激与微血管改变谈糖尿病视网膜病变的发病机制和防治策略[J].眼科新进展,2022,42(7):505-509.[doi:10.13389/j.cnki.rao.2022.0103]
 WAN Guangming,XUE Rong.Discussion on the pathogenesis and prevention of diabetic retinopathy from retinal oxidative stress and microvascular changes[J].Recent Advances in Ophthalmology,2022,42(7):505-509.[doi:10.13389/j.cnki.rao.2022.0103]
点击复制

从视网膜氧化应激与微血管改变谈糖尿病视网膜病变的发病机制和防治策略/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
42卷
期数:
2022年7期
页码:
505-509
栏目:
述评
出版日期:
2022-07-05

文章信息/Info

Title:
Discussion on the pathogenesis and prevention of diabetic retinopathy from retinal oxidative stress and microvascular changes
作者:
万光明薛瑢
450052 河南省郑州市,郑州大学第一附属医院眼科
Author(s):
WAN GuangmingXUE Rong
Department of Ophthalmology,the First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,Henan Province,China
关键词:
糖尿病视网膜病变活性氧氧化应激微血管改变抗氧化剂
Keywords:
diabetic retinopathy reactive oxygen species oxidative stress microvascular changes antioxidants
分类号:
R774.1
DOI:
10.13389/j.cnki.rao.2022.0103
文献标志码:
A
摘要:
糖尿病视网膜病变(DR)是糖尿病患者因长期高血糖而并发的视网膜微循环障碍性眼病,随病情进展可致严重视力损害。DR作为一种病因复杂的多因素疾病,尽管发病机制尚未完全阐明,但氧化应激已被证明是其中一个关键因素。高血糖引起机体多种代谢异常相互作用,诱导视网膜活性氧过度产生、氧化应激损伤增加,导致视网膜线粒体功能障碍、微血管功能障碍、血-视网膜屏障破坏、新生血管形成等一系列病理反应,显著影响DR发生发展的各个阶段。深入研究视网膜氧化应激与微血管改变在DR发病机制中的作用将有助于为防治DR提供新的思路。
Abstract:
Diabetic retinopathy (DR) is a retinal microvascular disorder complicated by long-term hyperglycemia in diabetic patients, which can lead to severe visual impairment as the disease progresses. Although the pathogenesis of DR is complex and not yet clear, oxidative stress has been proven to be one of the critical factors. Hyperglycemia causes the interaction of multiple metabolic abnormalities, induces the excessive production of reactive oxygen species in the retina, and increases oxidative stress damage. Pathological reactions, such as retinal mitochondrial dysfunction, microvascular dysfunction, blood-retinal barrier breakdown, and neovascularization, significantly affect the development of DR at all stages. Therefore, an in-depth study on the role of retinal oxidative stress and microvascular changes in the pathogenesis of DR can help to provide new ideas for the prevention and treatment of DR.

参考文献/References:

[1] CHEUNG N,MITCHELL P,WONG T Y.Diabetic retinopathy[J].Lancet,2010,376(9735):124-136.
[2] KOYA D,KING G L.Protein kinase C activation and the development of diabetic complications[J].Diabetes,1998,47(6):859-866.
[3] MIWA K,NAKAMURA J,HAMADA Y,NARUSE K,NAKASHIMA E,KATO K,et al.The role of polyol pathway in glucose-induced apoptosis of cultured retinal pericytes[J].Diabetes Res Clin Pract,2003,60(1):1-9.
[4] DU X L,EDELSTEIN D,ROSSETTI L,FANTUS I G,GOLDBERG H,ZIYADEH F,et al.Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation[J].Proc Natl Acad Sci USA,2000,97(22):12222-12226.
[5] HAMMES H P.Diabetic retinopathy:hyperglycaemia,oxidative stress and beyond[J].Diabetologia,2018,61(1):29-38.
[6] DAMMAK A,HUETE-TORAL F,CARPENA-TORRES C,MARTIN-GIL A,PASTRANA C,CARRACEDO G.From oxidative stress to inflammation in the posterior ocular diseases:diagnosis and treatment[J].Pharmaceutics,2021,13(9):1376.
[7] KANG Q,YANG C.Oxidative stress and diabetic retinopathy:molecular mechanisms,pathogenetic role and therapeutic implications[J].Redox Biol,2020,37:101799.
[8] MILLER D J,CASCIO M A,ROSCA M G.Diabetic retinopathy:the role of mitochondria in the neural retina and microvascular disease[J].Antioxidants (Basel),2020,9(10):905.
[9] POPRAC P,JOMOVA K,SIMUNKOVA M,KOLLAR V,RHODES C J,VALKO M.Targeting free radicals in oxidative stress-related human diseases[J].Trends Pharmacol Sci,2017,38(7):592-607.
[10] SIES H,BERNDT C,JONES D P.Oxidative stress[J].Annu Rev Biochem,2017,86:715-748.
[11] BROWNLEE M.The pathobiology of diabetic complications:a unifying mechanism[J].Diabetes,2005,54(6):1615-1625.
[12] ESHAQ R S,WRIGHT W S,HARRIS N R.Oxygen delivery,consumption,and conversion to reactive oxygen species in experimental models of diabetic retinopathy[J].Redox Biol,2014,2:661-666.
[13] DU Y,VEENSTRA A,PALCZEWSKI K,KERN T S.Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina[J].Proc Natl Acad Sci USA,2013,110(41):16586-16591.
[14] PAL S,RAO G N,PAL A.High glucose-induced ROS accumulation is a critical regulator of ERK1/2-Akt-tuberin-mTOR signalling in RGC-5 cells[J].Life Sci,2020,256:117914.
[15] HAMADA Y,ARAKI N,KOH N,NAKAMURA J,HORIUCHI S,HOTTA N.Rapid formation of advanced glycation end products by intermediate metabolites of glycolytic pathway and polyol pathway[J].Biochem Biophys Res Commun,1996,228(2):539-543.
[16] DAGHER Z,PARK Y S,ASNAGHI V,HOEHN T,GERHARDINGER C,LORENZI M.Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy[J].Diabetes,2004,53(9):2404-2411.
[17] GLOMB M A,MONNIER V M.Mechanism of protein modification by glyoxal and glycolaldehyde,reactive intermediates of the Maillard reaction[J].J Biol Chem,1995,270(17):10017-10026.
[18] YAMAGISHI S,NAKAMURA,MATSUI T,INAGAKI Y,TAKENAKA K,JINNOUCHI Y,et al.Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression[J].J Biol Chem,2006,281(29):20213-20220.
[19] YAMAGISHI S,MATSUI T.Advanced glycation end products (AGEs),oxidative stress and diabetic retinopathy[J].Curr Pharm Biotechnol,2011,12(3):362-368.
[20] SENA C M,MATAFOME P,CRISOSTOMO J,RODRIGUES L,FERNANDES R,PEREIRA P,et al.Methylglyoxal promotes oxidative stress and endothelial dysfunction[J].Pharmacol Res,2012,65(5):497-506.
[21] WANG N,WANG L,ZHANG C,TAN H Y,ZHANG Y,FENG Y.Berberine suppresses advanced glycation end products-associated diabetic retinopathy in hyperglycemic mice[J].Clin Transl Med,2021,11(11):e569.
[22] NAGY T,FISI V,FRANK D,KATAI E,NAGY Z,MISETA A.Hyperglycemia-induced aberrant cell proliferation; a metabolic challenge mediated by protein O-GlcNAc modification[J].Cells,2019,8(9):999.
[23] HART G W,HOUSLEY M P,SLAWSON C.Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins[J].Nature,2007,446(7139):1017-1022.
[24] DU X,MATSUMURA T,EDELSTEIN D,ROSSETTI L,ZSENGELLER Z,SZABO C,et al.Inhibition of GAPDH activity by poly (ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells[J].J Clin Invest,2003,112(7):1049-1057.
[25] GUREL Z,SHEIBANI N.O-linked beta-N-acetylglucosamine (O-GlcNAc) modification:a new pathway to decode pathogenesis of diabetic retinopathy[J].Clin Sci (Lond),2018,132(2):185-198.
[26] GERALDES P,KING G L.Activation of protein kinase C isoforms and its impact on diabetic complications[J].Circ Res,2010,106(8):1319-1331.
[27] WANG Q J.PKD at the crossroads of DAG and PKC signaling[J].Trends Pharmacol Sci,2006,27(6):317-323.
[28] DAS EVCIMEN N,KING G L.The role of protein kinase C activation and the vascular complications of diabetes[J].Pharmacol Res,2007,55(6):498-510.
[29] JIANG Y,ZHANG Q,STEINLE J J.Beta-adrenergic receptor agonist decreases VEGF levels through altered eNOS and PKC signaling in diabetic retina[J].Growth Factors,2015,33(3):192-199.
[30] VOLPE C M O,VILLAR-DELFINO P H,DOS ANJOS P M F,NOGUEIRA-MACHADO J A.Cellular death,reactive oxygen species (ROS) and diabetic complications[J].Cell Death Dis,2018,9(2):119.
[31] SENANAYAKE P,DRAZBA J,SHADRACH K,MILSTED A,RUNGGER-BRANDLE E,NISHIYAMA K,et al.Angiotensin II and its receptor subtypes in the human retina[J].Invest Ophthalmol Vis Sci,2007,48(7):3301-3311.
[32] OLA M S,ALHOMIDA A S,FERRARIO C M,AHMAD S.Role of tissue renin-angiotensin system and the Chymase/angiotensin-(1-12) axis in the pathogenesis of diabetic retinopathy[J].Curr Med Chem,2017,24(28):3104-3114.
[33] BEHI T,KOTWANI A.Potential of angiotensin II receptor blockers in the treatment of diabetic retinopathy[J].Life Sci,2017,176:1-9.
[34] PARK S W,YUN J H,KIM J H,KIM K W,CHO C H,KIM J H.Angiopoietin 2 induces pericyte apoptosis via alpha3beta1 integrin signaling in diabetic retinopathy[J].Diabetes,2014,63(9):3057-3068.
[35] MORI F,HIKICHI T,NAGAOKA T,TAKAHASHI J,KITAYA N,YOSHIDA A.Inhibitory effect of losartan,an AT1 angiotensin II receptor antagonist,on increased leucocyte entrapment in retinal microcirculation of diabetic rats[J].Br J Ophthalmol,2002,86(10):1172-1174.
[36] VUJOSEVIC S,MURACA A,ALKABES M,VILLANI E,CAVARZERAN F,ROSSETTI L,et al.Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy[J].Retina,2019,39(3):435-445.
[37] LI Z,WEN X,ZENG P,LIAO Y,FAN S,ZHANG Y,et al.Do microvascular changes occur preceding neural impairment in early-stage diabetic retinopathy? Evidence based on the optic nerve head using optical coherence tomography angiography[J].Acta Diabetol,2019,56(5):531-539.
[38] DOW C,MANCINI F,RAJAOBELINA K,BOUTRON-RUAULT M C,BALKSU B,BONNET F,et al.Diet and risk of diabetic retinopathy:a systematic review[J].Eur J Epidemiol,2018,33(2):141-156.
[39] GHADIRI SOUFI F,ARBABI-AVAL E,REZAEI KANAVI M,AHMADIEH H.Anti-inflammatory properties of resveratrol in the retinas of type 2 diabetic rats[J].Clin Exp Pharmacol Physiol,2015,42(1):63-68.
[40] YANG F,YU J,KE F,LAN M,LI D,TAN K,et al.Curcumin alleviates diabetic retinopathy in experimental diabetic rats[J].Ophthalmic Res,2018,60(1):43-54.
[41] NEELAM K,GOENADI C J,LUN K,YIP C C,AU EONG K G.Putative protective role of lutein and zeaxanthin in diabetic retinopathy[J].Br J Ophthalmol,2017,101(5):551-558.
[42] ROBLES-RIVERA R R,CASTELLANOS-GONZALEZ J A,OLVERA-MONTANO C,FLOREA-MARTIN R A,LOPZ-CONTRERAS A K,AREVALO-SIMENTAL D E,et al.Adjuvant therapies in diabetic retinopathy as an early approach to delay its progression:the importance of oxidative stress and inflammation[J].Oxid Med Cell Longev,2020,2020:3096470.
[43] VALLE M S,RUSSO C,MALAGUARNERA L.Protective role of vitamin D against oxidative stress in diabetic retinopathy[J].Diabetes Metab Res Rev,2021,37(8):e3447.
[44] NAKAI K,FUJII H,KONO K,GOTO S,KITAZAWA R,KITAZAWA S,et al.Vitamin D activates the Nrf2-Keap1 antioxidant pathway and ameliorates nephropathy in diabetic rats[J].Am J Hypertens,2014,27(4):586-595.
[45] JIANG J,CHE X,QIAN Y,LU S,WANG Z.Myricitrin exerts protective effect on retina in diabetic retinopathy via modulating oxidative stress expression of VEGF and apoptosis in experimental rats:a docking confirmation study[J].Mol Cell Toxicol,2022,18:149-158.
[46] MEI X,ZHANG T,OUYANG H,LU B,WANG Z,JI L.Scutellarin alleviates blood-retina-barrier oxidative stress injury initiated by activated microglia cells during the development of diabetic retinopathy[J].Biochem Pharmacol,2019,159:82-95.
[47] WU S,NING Y,ZHAO Y,SUN W,THORIMBERT S,DECHOUX L,SOLLOGOUB M,ZHANG Y.Research progress of natural product gentiopicroside-a secoiridoid compound[J].Mini Rev Med Chem,2017,17(1):62-77.
[48] ZHANG X,SHI E,YANG L,FU W,ZHOU,X.Gentiopicroside attenuates diabetic retinopathy by inhibiting inflammation,oxidative stress,and NF-κB activation in rat model[J].Eur J Inflamm,2019,17(4):205873921984783.

相似文献/References:

[1]杜玮 刘子扬 周艳艳 雒雷鸣.糖尿病视网膜病变与血清胆红素水平的关系[J].眼科新进展,2012,32(5):000.
[2]范松涛 卢建民.阿司匹林与糖尿病患者玻璃体出血以及玻璃体切割术疗效的相关性研究[J].眼科新进展,2012,32(11):000.
[3]周海燕 高晨 周丽雅 张景科 王小梅 田蔓男.依达拉奉对大鼠视神经钳夹伤后视网膜细胞的保护作用[J].眼科新进展,2012,32(12):000.
[4]李艳 李筱荣 袁佳琴 潘斌.糖尿病大鼠视网膜中VEGF、PEDF的表达与血-视网膜屏障损伤[J].眼科新进展,2013,33(1):000.
[5]李朝晖 崔治华 胡晓英 孟丽珠 张敬维.糖尿病视网膜病变激光面积与疗效的分析[J].眼科新进展,2013,33(2):000.
[6]冯冬梅 朱鸿 施彩虹.CXC趋化因子及其受体在糖尿病视网膜病变中的作用[J].眼科新进展,2013,33(6):000.
[7]吴恺 谭钢 邵毅 刘二华.莱菔硫烷对高糖条件下大鼠晶状体上皮细胞活性氧产生与线粒体膜电位的影响及机制研究[J].眼科新进展,2013,33(7):000.
[8]牛淑玲.糖尿病视网膜病变患者HbAlc、FPG与血小板参数的变化及危险因素分析[J].眼科新进展,2013,33(7):000.
[9]毕春潮 王睿 王建洲 雷春灵 董晓娟 王小莉 薛晓辉.Ad-PEDF对糖尿病视网膜病变大鼠视网膜新生血管的抑制作用[J].眼科新进展,2013,33(8):000.
[10]杨萍 孙书明 李晓鹏.辛伐他汀对糖尿病视网膜病变和炎症因子的影响[J].眼科新进展,2013,33(8):000.
[11]温艳君,张雪蕊,韦严,等.高糖环境下Ndufa4线粒体复合体相关蛋白2(Ndufa4l2)对小鼠视网膜感光细胞661W的影响[J].眼科新进展,2022,42(4):262.[doi:10.13389/j.cnki.rao.2022.0053]
 WEN Yanjun,ZHANG Xuerui,WEI Yan,et al.Effects of Ndufa4 mitochondrial complex associated like 2 on 661W cells exposed to high glucose[J].Recent Advances in Ophthalmology,2022,42(7):262.[doi:10.13389/j.cnki.rao.2022.0053]

备注/Memo

备注/Memo:
国家自然科学基金面上项目(编号:81970824);国家重点研发计划子课题(编号:2018YFA0107304)
更新日期/Last Update: 2022-07-05