[1]石蕊,杨雨雯,付子蔚,等.miR-26a/PTEN在糖尿病小鼠视网膜神经变性中的作用及其机制[J].眼科新进展,2021,41(8):722-726.[doi:10.13389/j.cnki.rao.2021.0150]
 SHI Rui,YANG Yuwen,FU Ziwei,et al.Effects of miR-26a/phosphatase and tensin homolog on retinal neurodegeneration in diabetic mice and its underlying mechanism[J].Recent Advances in Ophthalmology,2021,41(8):722-726.[doi:10.13389/j.cnki.rao.2021.0150]
点击复制

miR-26a/PTEN在糖尿病小鼠视网膜神经变性中的作用及其机制/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
41卷
期数:
2021年8期
页码:
722-726
栏目:
实验研究
出版日期:
2021-08-05

文章信息/Info

Title:
Effects of miR-26a/phosphatase and tensin homolog on retinal neurodegeneration in diabetic mice and its underlying mechanism
作者:
石蕊杨雨雯付子蔚刘丹丹陈卓张雪梅
710068 陕西省西安市,陕西省人民医院眼科(石蕊,付子蔚,刘丹丹);710021 陕西省西安市,西安医学院(杨雨雯,陈卓);710068 陕西省西安市,陕西省人民医院超声科(张雪梅)
Author(s):
SHI Rui1 YANG Yuwen2 FU Ziwei1 LIU Dandan1 CHEN Zhuo2 ZHANG Xuemei3
1.Department of Ophthalmology, Shaanxi Provincial People’s Hospital, Xi’an 710068, Shaanxi Province, China
2.Xi’an Medical University, Xi’an 710021, Shaanxi Province, China
3.Department of Ultrasonography, Shaanxi Provincial People’s Hospital, Xi’an 710068, Shaanxi Province, China
关键词:
糖尿病视网膜神经变性miR-26aPTEN糖尿病
Keywords:
diabetic retinal neurodegeneration miR-26a PTEN diabetes
分类号:
R774.1
DOI:
10.13389/j.cnki.rao.2021.0150
文献标志码:
A
摘要:
目的 探讨 microRNA-26a-5p (miR-26a)/PTEN在早期糖尿病小鼠视网膜神经变性(DRN)中的作用及其机制。方法 66只C57BL/6J小鼠随机分为实验组和对照组,实验组小鼠腹腔注射链脲佐菌素建立糖尿病动物模型。实验组小鼠造模成功后随机分为糖尿病组和miR-26a组,miR-26a组小鼠玻璃体内注射miR-26a mimic上调视网膜组织中miR-26a的表达。玻璃体内注射2周后所有小鼠用100 g·L-1水合氯醛腹腔注射麻醉并处死,立即摘除眼球。HE染色及透射电镜分别观察各组小鼠视网膜形态学及超微结构变化,免疫荧光半定量检测并定位PTEN、胶质细胞原纤维酸性蛋白(GFAP)在小鼠视网膜各层的表达,qRT-PCR测量各组小鼠视网膜中miR-26a、PTEN和GFAP的mRNA表达。结果 糖尿病组小鼠视网膜神经上皮层厚度较对照组变薄,视网膜神经节细胞(RGC)数量减少,差异均有统计学意义(均为 P<0.05);视网膜组织中miR-26a mRNA表达下降(P<0.05),GFAP及PTEN的mRNA表达较对照组小鼠均明显升高(均为 P<0.05)。与糖尿病组小鼠相比,miR-26a组小鼠视网膜全层厚度明显增厚(均为 P<0.05),RGC丢失减少,视网膜组织中miR-26a mRNA表达升高,而GFAP及PTEN的mRNA表达均降低,差异均有统计学意义(均为 P<0.05)。结论 miR-26a可能通过下调视网膜组织中PTEN的表达减轻糖尿病小鼠的DRN。
Abstract:
Objective To discuss the effect of microRNA-26a-5p (miR-26a)/PTEN on early diabetic retinal neurodegeneration (DRN) and identify the underlying mechanism.Methods A total of 66 C57BL/6J mice were randomly divided into the experimental group and control group. Mice in the experimental group were intraperitoneally injected with streptozotocin to establish models of diabeties mellitus (DM). The DM mice were then randomly divided into the DM group and miR-26a group. Mice in the miR-26a group were intravitreally injected with miR-26a mimic to up-regulate the expression of miR-26a in the retina. Two weeks later, the mice were sacrificed by anesthesia with 100 g·L-1 chloral hydrate intraperitoneally, and their eyes were enucleated immediately for examinations. Hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) were used to observe the changes in the retinal morphology and ultrastructure of mice in each group, respectively. The PTEN and GFAP expression in the retina were examined semi-quantitatively with an immunofluorescence assay. The mRNA expression of miR-26a, PTEN and GFAP in the retina was measured with quantitative real-time PCR (qRT-PCR).Results Mice in the DM group had significantly reduced neuroretinal thickness and retinal ganglion cells (RGC) (all P<0.05). The mRNA expression of miR-26a in the retina was decreased (P<0.05), while the mRNA expression of GFAP and PTEN was significantly increased compared with the control group (both P<0.05). Compared with the DM group, mice in the miR-26a group had retinal thickness significantly increased and RGC loss decreased; the mRNA expression of miR-26a in the retina was increased, and the mRNA expression of GFAP and PTEN was decreased, with the differences being statistically significant (all P<0.05).Conclusion MiR-26a may relieve the DRN of DM mice by down-regulating PTEN expression in the retina.

参考文献/References:

[1] ANTONETTI D A,SILVA P S,STITT A W.Current understanding of the molecular and cellular pathology of diabetic retinopathy[J].Nat Rev Endocrinol,2021,17(4):195-206.
[2] SOHN E H,DIJK H,JIAO C,KOK P,MICHAEL D.Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus[J].Proc Natl Acad Sci,2016,113(19):2655-2664.
[3] SIMO R,STITT A W,GARDNER T W.Neurodegeneration in diabetic retinopathy:does it really matter?[J].Diabetologia,2018,61(9):1902-1912.
[4] LU J M,ZHANG Z Z,MA X,FANG S F,QIN X H.Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy[J].Exp Eye Res,2020,190:107886.
[5] LIU Z F,WANG X,JIANG K,JI X M,ZHANG A,CHEN Z.TNFalpha-induced up-regulation of Ascl2 affects the differentiation and proliferation of neural stem cells[J].Aging Dis,2019,10(6):1207-1220.
[6] SHI R,WANG W R,DENG Y,LIU Y Z,ZHOU H Y,LIN R.Plasma miR-26a-5p is a biomarker for retinal neurodegeneration of early diabetic retinopathy[J].Eye,2021,35(6):1587-1599.
[7] STITT A W,CURTIS T M,CHEN M,MEDINA R G,MCKAY G J,JENKINS A,et al.The progress in understanding and treatment of diabetic retinopathy[J].Prog Retin Eye Res,2016,51:156-186.
[8] SOHN E H,HAN I C,ABAMOFF M D.Diabetic retinal neurodegeneration-should we redefine retinopathy from diabetes?[J].JAMA Ophthalmol,2019,137(10):1132-1133.
[9] SHI R,GUO Z L,WANG F,LI R,ZHAO L,LIN R.Alterations in retinal nerve fiber layer thickness in early stages of diabetic retinopathy and potential risk factors[J].Curr Eye Res,2018,43(2):244-253.
[10] WANG W,LO A.Diabetic retinopathy:pathophysiology and treatments[J].Int J Mol Sci,2018,19(6):1816.
[11] SHI Q Q,CHEN X Y,SUN G L,WANG G L,WANG L L,CUI G S.Ginsenoside Rg1 protects human retinal pigment epithelial ARPE-19 cells from toxicity of high glucose by up-regulation of miR-26a[J].Life Sci,2019,221:152-158.
[12] CHEN X C,XIAO W,CHEN W R,LIU X L,WU M X,BO Q,et al.MicroRNA-26a and -26b inhibit lens fibrosis and cataract by negatively regulating Jagged-1/Notch signaling pathway[J].Cell Death Differ,2017,24(8):1431-1442.
[13] SILAMBARASAB M,TAN J R,KAROLINA D S,ARMUGAM A,KAUR C,JEYASEELAN K.MicroRNAs in hyperglycemia induced endothelial cell dysfunction[J].Int J Mol Sci,2016,17(4):518.
[14] ZHANG L,LIU X R,LIU J Z,MA X N,ZHOU X N,ZHOU X N,et al.miR-26a promoted endometrial epithelium cells (EECs) proliferation and induced stromal cells (ESCs) apoptosis via the PTEN-PI3K/AKT pathway in dairy goats[J].J Cell Physiol,2018,233(6):4688-4706.
[15] TIAN S G,YUAN Y,LI Z,GAO M,LU Y,GAO H Y.LncRNA UCA1 sponges miR-26a to regulate the migration and proliferation of vascular smooth muscle cells[J].Gene,2018,673:159-166.

相似文献/References:

[1]李娜,曹娟,郁继国,等.miR-26a对葡萄膜黑色素瘤细胞增殖、凋亡、迁移和侵袭的影响及机制研究[J].眼科新进展,2017,37(7):619.[doi:10.13389/j.cnki.rao.2017.0157]
 LI Na,CAO Juan,YU Ji-Guo,et al.Effects of miR-26a on proliferation,apoptosis,migration and invasion of uveal melanoma cell and its mechanism[J].Recent Advances in Ophthalmology,2017,37(8):619.[doi:10.13389/j.cnki.rao.2017.0157]
[2]陈蓬,邹文军.视网膜小胶质细胞参与糖尿病视网膜神经变性的分子机制研究进展[J].眼科新进展,2022,42(9):749.[doi:10.13389/j.cnki.rao.2022.0154]
 CHEN Peng,ZOU Wenjun.Advances in the molecular mechanism of retinal microglial cells involved in diabetic retinal neurodegeneration[J].Recent Advances in Ophthalmology,2022,42(8):749.[doi:10.13389/j.cnki.rao.2022.0154]

备注/Memo

备注/Memo:
陕西省教育厅科研计划项目(编号:19JK0772)
更新日期/Last Update: 2021-08-05