[1]王坤,朱曼辉,陈莉莉,等.长链非编码RNA 母系表达基因3调控miR-34a对糖尿病视网膜病变Müller细胞活化及炎症因子分泌的影响[J].眼科新进展,2021,41(1):042-47.[doi:10.13389/j.cnki.rao.2021.0009]
 WANG Kun,ZHU Manhui,CHEN Lili,et al.Effect of lncRNA MEG3 regulating miR-34a on the activation of Müller cells and the secretion of inflammatory cytokines in diabetic retinopathy[J].Recent Advances in Ophthalmology,2021,41(1):042-47.[doi:10.13389/j.cnki.rao.2021.0009]
点击复制

长链非编码RNA 母系表达基因3调控miR-34a对糖尿病视网膜病变Müller细胞活化及炎症因子分泌的影响/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
41卷
期数:
2021年1期
页码:
042-47
栏目:
实验研究
出版日期:
2021-01-05

文章信息/Info

Title:
Effect of lncRNA MEG3 regulating miR-34a on the activation of Müller cells and the secretion of inflammatory cytokines in diabetic retinopathy
作者:
王坤朱曼辉陈莉莉涂园园万光明梁申芝
215021 江苏省苏州市,苏州大学附属理想眼科医院(王坤, 朱曼辉, 陈莉莉, 涂园园);450052 河南省郑州市,郑州大学第一附属医院眼科(万光明 ,梁申芝)
Author(s):
WANG Kun1ZHU Manhui1CHEN Lili1TU Yuanyuan1WAN Guangming2LIANG Shenzhi2
1.Lixiang Eye Hospital of Soochow University,Suzhou 215021,Jiangsu Province,China
2.Department of Ophthalmology,the First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,Henan Province,China
关键词:
糖尿病视网膜病变Müller细胞胶质纤维酸性蛋白血管内皮生长因子母系表达基因3
Keywords:
diabetic retinopathy Müller cells glial fibrillary acidic protein vascular endothelial growth factor maternally expressed gene 3
分类号:
R774.1
DOI:
10.13389/j.cnki.rao.2021.0009
文献标志码:
A
摘要:
目的 探讨母系表达基因3(maternally expressed gene 3,MEG3)对糖尿病视网膜病变(DR)Müller细胞的活化及炎症因子分泌的影响及机制。方法 高脂饮食联合链脲佐菌素腹腔注射构建小鼠DR体内模型。高糖刺激人视网膜Müller细胞株MIO-M1构建DR体外模型。免疫荧光化学染色及Western blot检测小鼠视网膜及Müller细胞中胶质纤维酸性蛋白(GFAP)的表达。Western blot及酶联免疫吸附实验(ELISA)检测小鼠视网膜及细胞培养基上清中血管内皮生长因子(VEGF)蛋白的表达。ELISA检测小鼠视网膜及细胞培养基上清中IL-1β蛋白的表达。分别或同时向Müller细胞中转染pcDNA-MEG3及miR-34a mimic对其表达进行干预。qRT-PCR检测MEG3 mRNA及miR-34a表达。结果 与正常对照组小鼠比较,DR组小鼠视网膜中GFAP、VEGF及IL-1β蛋白表达均增多(均为P<0.05),MEG3 mRNA表达降低(P<0.01)。与对照组比较,高糖组Müller细胞中MEG3 mRNA表达降低(P<0.01),而GFAP、VEGF及IL-1β蛋白表达均升高(均为P<0.05)。与高糖组比较,高糖+pcDNA-MEG3组中GFAP、VEGF及IL-1β蛋白表达均降低(均为P<0.05)。与正常对照组比较,DR组小鼠视网膜及高糖刺激的Müller细胞中miR-34a表达均升高(均为P<0.05)。与pcDNA组比较,pcDNA-MEG3组中miR-34a表达减少(P<0.01)。与pcDNA+NC mimic组比较,pcDNA+miR-34a mimic组中GFAP、VEGF及IL-1β蛋白表达均升高(均为P<0.05),而pcDNA-MEG3+NC mimic组中GFAP、VEGF及IL-1β蛋白表达均减少(均为P<0.05)。与pcDNA-MEG3+miR-34a mimic组比较,GFAP、VEGF及IL-1β蛋白表达水平均升高(均为P<0.05)。结论 MEG3在DR小鼠视网膜及高糖刺激的Müller细胞中表达均降低,其可通过负向调控miR-34a抑制Müller细胞活化及炎症因子的分泌。过表达MEG3可能成为DR治疗的新靶点。
Abstract:
Objective To investigate the effect and mechanism of maternally expressed gene 3 (MEG3) on the activation of diabetic retinopathy Müller cells and the secretion of inflammatory cytokines.Methods A High-fat diet combined with intraperitoneal injection of streptozotocin (STZ) was used to construct an in vivo model of diabetic retinopathy (DR) in mice. High glucose stimulated human retinal Müller cell line MIO-M1 to construct DR in vitro model. Immunofluorescence and Western blot were used to detect the expression of glial fibrillary acidic protein (GFAP) in mouse retina and Müller cells. Western blot and enzyme linked immunosorbent assay (ELISA) were used to detect the expression of vascular endothelial growth factor (VEGF) in mouse retina and cell culture supernatant. ELISA was used to detect the expression of IL-1β in mouse retina and cell culture supernatant. We interfered the expression of MEG3 and miR-34a through transfecting pcDNA-MEG3 and miR-34a mimic to Müller cells separately or simultaneously. qRT-PCR was used to detect MEG3 and miR-34a expression. Results Compared with the normal control group,the expression levels of GFAP,VEGF and IL-1β protein in the retina of the DR group increased (all P<0.05),and the expression of MEG3 mRNA decreased (P<0.01). Compared with the control group,the expression level of MEG3 mRNA in Müller cells of the high glucose group decreased (P<0.01),while the expression levels of GFAP,VEGF and IL-1β protein increased (all P<0.05). Compared with the high glucose group,the expression levels of GFAP,VEGF and IL-1β protein in the high glucose+pcDNA-MEG3 group were all decreased (all P<0.05). Compared with the normal control group,the expression levels of miR-34a in the retina of DR mice and Müller cells stimulated by high glucose increased (both P<0.05). Compared with the pcDNA group,the expression level of miR-34a in the pcDNA-MEG3 group was reduced (P<0.01). Compared with the pcDNA+NC mimic group,the expression levels of GFAP,VEGF and IL-1β protein increased in the pcDNA+miR-34a mimic group (all P<0.05),while the pcDNA-MEG3+NC mimic group decreased (all P<0.05). Compared with the pcDNA-MEG3+miR-34a mimic group,the expression levels of GFAP,VEGF and IL-1β protein increased (all P<0.05).Conclusion MEG3 expression level is decreased in the retina of DR mice and high glucose-stimulated Müller cells, and it can inhibit miR-34a by inhibiting Müller cells activation and inflammatory factors secretion. Overexpression of MEG3 may become a new target for DR therapy.

参考文献/References:

[1] LEASHER J L,BOURNE R R,FLAXMAN S R,JONAS J B,KEEFFE J,NAIDOO K,et al.Global estimates on the number of people blind or visually impaired by diabetic retinopathy:a meta-analysis from 1990 to 2010[J].Diabetes Care,2016,39(9):2096.
[2] TANG J,KERN T S.Inflammation in diabetic retinopathy[J].Prog Retin Eye Res,2011,30(5):343-358.
[3] JING Y,CHEN C,MCLAUGHLIN T,WANG Y Q,LE Y Z,WANG J J,et al.Loss of X-box binding protein 1 in Müller cells augments retinal inflammation in a mouse model of diabetes[J].Diabetologia,2019,62:531-543.
[4] BAI Y Y,MA J X,GUO J J,WANG J J,ZHU M L,CHEN Y,et al.Müller cell—derived VEGF is a significant contributor to retinal neovascularization[J].J Pathology,2009,219(4):446-454.
[5] SINGER M A,KERMANY D S,WATERS J,JANSEN M E,TYLER L.Diabetic macular edema:it is more than just VEGF[J].F1000 Res,2016,5:1019.
[6] WANG J W,GAO X,LIU J,WANG J,ZHANG Y,ZHANG T H,et al.Effect of intravitreal conbercept treatment on the expression of long noncoding RNAs and mRNAs in proliferative diabetic retinopathy patients[J].Acta Ophthalmol,2019,97(6):902-912.
[7] ZHANG D,QIN H X,LENG Y,LI X J,ZHANG L,BAI D,et al.LncRNA MEG3 overexpression inhibits the development of diabetic retinopathy by regulating TGF-β1 and VEGF[J].Experiment Thera Med,2018,16(3):2337-2342.
[8] QIU G Z,TIAN W,FU H T,LI C P,LIU B.Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction[J].Biochem Biophy Res Commun,2016,471(1):135-141.
[9] ZHAO Y,CHEN X,TONG X L.Effect of lncRNA MEG3 on retinopathy in diabetic rats through regulating Fox01 expression[J].Eur Rev Med Pharmacol Sci,2019,23(21):9163-9170.
[10] Al-KHARASH I,ABDULLAH S.Role of oxidative stress,inflammation,hypoxia and angiogenesis in the development of diabetic retinopathy[J].Saudi J Ophthalmol,2018,32(4):318-323.
[11] CARPINETO P,TOTO L,ALOIA R,CICIARELLI V,BORRELLI E,VITACOLONNA E,et al.Neuroretinal alterations in the early stages of diabetic retinopathy in patients with type 2 diabetes mellitus[J].Eye,2016,30(5):673-679.
[12] 李晶艳,周琦,吕红彬.糖尿病早期视网膜神经元退行性病变最新研究进展[J].眼科新进展,2015,35(5):493-496.
LI J Y,ZHOU Q,LYU H B.Recent Advances in the study of retinal Neuron Degeneration in early diabetes mellitus [J].Rec Adv Ophthalmol,2015,35(5):493-496.
[13] BRINGMANN A,PANNICKE T,GROSCHE J,FRANCKE M,WIEDEMANN P,SKATCHKOV S N,et al.Müller cells in the healthy and diseased retina[J].Prog Retin Eye Res,2006,25(4):397-424.
[14] 钱志刚,柯敏.Müller细胞在糖尿病视网膜病变中的作用[J].眼科新进展,2010,30(2):189-192.
QIAN Z G,KE M.The role of Müller cells in diabetic retinopathy [J].Rec Adv Ophthalmol,2010,30(2):189-192.
[15] EL-ASRAR A M A,MOHAMMAD G,NAWAZ M I,SIDDIQUEI M M,EYNDE K V D,MOUSA A,et al.Relationship between vitreous levels of matrix metalloproteinases and vascular endothelial growth factor in proliferative diabetic retinopathy[J].PLoS One,2014,8(12):85857.
[16] RUNGGER-BRANDLE E,DOSSA A A,LEUENBERGER P M.Glial reactivity,an early feature of diabetic retinopathy[J].Invest Ophthalmol Vis Sci,2000,41(7):1971.
[17] FISCHER A J,OMAR G,EUBANKS J,MCGUIRE C R,DIERKS B D,REHTA J M V.Different aspects of gliosis in retinal Muller glia can be induced by CNTF,insulin,and FGF2 in the absence of damage[J].Mol Vis,2004,10:973-986.
[18] MARTINEZ B,PEPLOW P V.MicroRNAs as biomarkers of diabetic retinopathy and disease progression[J].Neural Regen Res,2019,14(11):1858.
[19] TONG P,PENG Q H,GU L M,XIE W W,LI W J.LncRNA-MEG3 alleviates high glucose induced inflammation and apoptosis of retina epithelial cells via regulating miR-34a/SIRT1 axis[J].Experiment Mol Pathol,2018,107:102-109.
[20] HUANG X,GAO Y,QIN J,LU S.The mechanism of long non-coding RNA MEG3 for hepatic ischemia-reperfusion:Mediated by miR-34a/Nrf2 signaling pathway[J].J Cellul Biochem,2018,119(1):1163-1172.

相似文献/References:

[1]杜玮 刘子扬 周艳艳 雒雷鸣.糖尿病视网膜病变与血清胆红素水平的关系[J].眼科新进展,2012,32(5):000.
[2]范松涛 卢建民.阿司匹林与糖尿病患者玻璃体出血以及玻璃体切割术疗效的相关性研究[J].眼科新进展,2012,32(11):000.
[3]李艳 李筱荣 袁佳琴 潘斌.糖尿病大鼠视网膜中VEGF、PEDF的表达与血-视网膜屏障损伤[J].眼科新进展,2013,33(1):000.
[4]李朝晖 崔治华 胡晓英 孟丽珠 张敬维.糖尿病视网膜病变激光面积与疗效的分析[J].眼科新进展,2013,33(2):000.
[5]冯冬梅 朱鸿 施彩虹.CXC趋化因子及其受体在糖尿病视网膜病变中的作用[J].眼科新进展,2013,33(6):000.
[6]牛淑玲.糖尿病视网膜病变患者HbAlc、FPG与血小板参数的变化及危险因素分析[J].眼科新进展,2013,33(7):000.
[7]毕春潮 王睿 王建洲 雷春灵 董晓娟 王小莉 薛晓辉.Ad-PEDF对糖尿病视网膜病变大鼠视网膜新生血管的抑制作用[J].眼科新进展,2013,33(8):000.
[8]杨萍 孙书明 李晓鹏.辛伐他汀对糖尿病视网膜病变和炎症因子的影响[J].眼科新进展,2013,33(8):000.
[9]罗文婷 孙大卫.血管黏附蛋白-1在眼科疾病中的研究进展[J].眼科新进展,2013,33(8):000.
[10]李小璐 马雅玲.糖尿病视网膜病变大鼠视网膜VEGF和PEDF的动态表达[J].眼科新进展,2013,33(9):000.
[11]梁汇珉,李赵伟,李铮,等.脑源性神经营养因子对糖尿病大鼠视网膜Müller细胞的保护作用[J].眼科新进展,2017,37(12):1110.[doi:10.13389/j.cnki.rao.2017.0280]
 LIANG Hui-Min,LI Zhao-Wei,LI Zheng,et al.Effect of brain-derived neurotrophic factor on retinal Müller cells in diabetic rats[J].Recent Advances in Ophthalmology,2017,37(1):1110.[doi:10.13389/j.cnki.rao.2017.0280]
[12]李赵伟,梁汇珉,李铮,等.罗格列酮对糖尿病视网膜Müller细胞的保护作用以及对Müller细胞胶质纤维酸性蛋白(GFAP)及炎症因子表达的影响[J].眼科新进展,2018,38(9):825.[doi:10.13389/j.cnki.rao.2018.0195]
 LI Zhao-Wei,LIANG Hui-Min,LI Zheng,et al.The protective effect of rosiglitazone on diabetic retinal Müller cells and its effects on the expression of glial fibrillary acidic protein (GFAP) and inflammatory factors in Müller cells[J].Recent Advances in Ophthalmology,2018,38(1):825.[doi:10.13389/j.cnki.rao.2018.0195]
[13]冯闯,左中夫,刘文强,等.抑制JAK/STAT信号通路对糖尿病早期大鼠视网膜Müller细胞的保护作用及对谷氨酸转运蛋白表达的影响[J].眼科新进展,2019,39(2):105.[doi:10.13389/j.cnki.rao.2019.0024]
 FENG Chuang,ZUO Zhong-Fu,LIU Wen-Qiang,et al.Inhibition of JAK/STAT signaling pathway protects retinal Müller cells and affects the expression of glutamate transporter in early diabetic rats[J].Recent Advances in Ophthalmology,2019,39(1):105.[doi:10.13389/j.cnki.rao.2019.0024]
[14]张俏,刘文强,左中夫,等.褪黑素通过Müller细胞保护糖尿病视网膜神经节细胞的机制[J].眼科新进展,2019,39(7):611.[doi:10.13389/j.cnki.rao.2019.0141]
 ZHANG Qiao,LIU Wen-Qiang,ZUO Zhong-Fu,et al.Protective effects of melatonin on diabetic retinal ganglion cell via Müller cell[J].Recent Advances in Ophthalmology,2019,39(1):611.[doi:10.13389/j.cnki.rao.2019.0141]
[15]于洋,刘学政.CDK抑制剂对糖尿病大鼠视网膜Müller细胞胶质增殖及新生血管形成的抑制作用[J].眼科新进展,2019,39(9):809.[doi:10.13389/j.cnki.rao.2019.0184]
 YU Yang,LIU Xue-Zheng.Inhibitory effects of CDK inhibitors on the glial proliferation of retinal Müller cells and retinal neovascularization in diabetic rats[J].Recent Advances in Ophthalmology,2019,39(1):809.[doi:10.13389/j.cnki.rao.2019.0184]
[16]吴传玲,刘安琪,左中夫,等.Raf-1激酶抑制蛋白(RKIP)对糖尿病大鼠视网膜神经损伤的保护作用[J].眼科新进展,2020,40(4):323.[doi:10.13389/j.cnki.rao.2020.0074]
 WU Chuanling,LIU Anqi,ZUO Zhongfu,et al.Protective effect of RKIP on retinal nerve injury in diabetic rats through p38-MAPK pathway[J].Recent Advances in Ophthalmology,2020,40(1):323.[doi:10.13389/j.cnki.rao.2020.0074]
[17]罗影,左中夫,张俏,等.葛花总黄酮对糖尿病视网膜病变大鼠视网膜Müller细胞的保护作用[J].眼科新进展,2020,40(11):1033.[doi:10.13389/j.cnki.rao.2020.0231]
 LUO Ying,ZUO Zhongfu,ZHANG Qiao,et al.Protective effect of total flavonoids of Pueraria on retinal Müller cell in diabetic rats[J].Recent Advances in Ophthalmology,2020,40(1):1033.[doi:10.13389/j.cnki.rao.2020.0231]
[18]罗影,张俏,单伟.神经胶质成熟因子-β对糖尿病大鼠视网膜Müller细胞活化的影响及可能机制[J].眼科新进展,2023,43(3):190.[doi:10.13389/j.cnki.rao.2023.0038]
 LUO Ying,ZHANG Qiao,SHAN Wei.Effect of glia maturation factor-β on the activation of retinal Müller cells in diabetic rats and its mechanism[J].Recent Advances in Ophthalmology,2023,43(1):190.[doi:10.13389/j.cnki.rao.2023.0038]

备注/Memo

备注/Memo:
苏州市科技局项目(编号:SYS2018005);苏州市卫生和计划生育委员会项目(编号:KJXW2018076)
更新日期/Last Update: 2021-01-05