[1]王雪纯,张伟,郭雅图,等.熟地黄、枸杞子及其混合提取物对小鼠视网膜光损伤的保护作用[J].眼科新进展,2021,41(1):012-17.[doi:10.13389/j.cnki.rao.2021.0003]
 WANG Xuechun,ZHANG Wei,GUO Yatu,et al.Protective effects of rehmannia glutinosa, wolfberry and the mixed extracts on light-induced retinal injury of mice[J].Recent Advances in Ophthalmology,2021,41(1):012-17.[doi:10.13389/j.cnki.rao.2021.0003]
点击复制

熟地黄、枸杞子及其混合提取物对小鼠视网膜光损伤的保护作用/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
41卷
期数:
2021年1期
页码:
012-17
栏目:
实验研究
出版日期:
2021-01-05

文章信息/Info

Title:
Protective effects of rehmannia glutinosa, wolfberry and the mixed extracts on light-induced retinal injury of mice
作者:
王雪纯张伟郭雅图巩一博
300020 天津市,天津医科大学眼科临床学院(王雪纯,巩一博);300020 天津市,天津市眼科医院(张伟,郭雅图)
Author(s):
WANG Xuechun1ZHANG Wei2GUO Yatu2GONG Yibo1
1.Clinical College of Ophthalmology,Tianjin Medical University,Tianjin 300020,China
2.Tianjin Eye Hospital,Tianjin 300020,China
关键词:
年龄相关性黄斑变性光损伤视网膜熟地黄枸杞子抗氧化
Keywords:
age-related macular degeneration light damage retina rehmannia glutinosa wolfberry antioxidant
分类号:
R774
DOI:
10.13389/j.cnki.rao.2021.0003
文献标志码:
A
摘要:
目的 探讨熟地黄、枸杞子及其混合提取物对小鼠光诱导视网膜损伤的作用。方法 雄性C57BL/6小鼠34只,随机分为5组:对照组、模型组、熟地黄组、枸杞子组、熟地黄+枸杞子组,药物干预组分别予相应药物提取物灌胃,并暴露于一定光照强度下。通过视网膜电图测量视觉功能,光学相干断层扫描观察活体视网膜形态,荧光素眼底血管造影术观察视网膜血管形态和面积,病理切片HE染色观察视网膜结构变化, TUNEL染色观察视网膜细胞凋亡情况,通过检测血液中抗氧化酶活性及丙二醛浓度评价药物抗氧化作用。结果 枸杞子组、熟地黄+枸杞子组小鼠光损伤后视网膜电图中0.01 cds?m-2、3.00 cds?m-2、10.00 cds?m-2暗反应下b波波幅较模型组均提高,其中熟地黄+枸杞子组较模型组0.01 cds?m-2暗反应震荡电位(OPS)波显著提高,差异均有统计学意义(均为P<0.05)。模型组小鼠的眼底照相中观察到视网膜渗出样改变和玻璃膜疣样病变,但在对照组、枸杞子组和熟地黄+枸杞子组中未观察到此病变。在HE染色中,模型组外核层结构有明显的紊乱、细胞密度降低趋势,对照组、熟地黄组、枸杞子组和熟地黄+枸杞子组外核层细胞排列紧密且规则。与模型组比较,枸杞子组、熟地黄组、熟地黄+枸杞子组可显著降低视网膜细胞凋亡率(均为P<0.05)。熟地黄组、枸杞子组和熟地黄+枸杞子组中超氧化物歧化酶活性较模型组分别升高了8.93%、16.30%、20.57%,熟地黄组、枸杞子组、熟地黄+枸杞子组中谷胱甘肽过氧化物酶活性较模型组分别升高了14.44%、20.05%、36.04%,熟地黄+枸杞子组中丙二醛含量较模型组降低了7.60%,差异均有统计学意义(均为P<0.05)。结论 熟地黄、枸杞子对AMD模型小鼠的视网膜功能与结构有保护作用,两种药物同时干预效果更加明显。
Abstract:
Objective To investigate the effects of rehmannia glutinosa, wolfberry and mixed extracts on light-induced retinal damage in mice.Methods Thirty-four male C57BL/6 mice were randomly divided into five groups:control group, model group, rehmannia glutinosa group, wolfberry group, rehmannia glutinosa + wolfberry group. The experimental groups were given the corresponding drug extracts, and then exposed to a certain light intensity. Visual function was measured by electroretinogram (ERG), morphology of living retina was observed by optical coherence tomography (OCT). Morphology and area of retinal vessels were observed by fluorescein fundus angiography (FFA). Histological changes of retina were evaluated by HE staining. TUNEL staining was used to calculate the retinal cell apoptosis rate. The antioxidant enzyme activity and MDA concentration in the blood were measured to evaluate the antioxidative effect of the drug.Results The b-wave amplitude of the wolfberry group and rehmannia glutinosa + wolfberry group in the electroretinogram after light injury at 0.01 cds?m-2, 3.00 cds?m-2, 10.00 cds?m-2 dark response increased, and OPS-wave in the rehmannia glutinosa + wolfberry group at 0.01 cds?m-2 dark response was significantly higher than the model group, and the differences were statistically significant (all P<0.05). Retinal exudation-like changes and vitreous wart-like lesions were observed in the model group, but not in the control group and rehmannia glutinosa + wolfberry group. In HE staining, the outer nuclear layer (ONL) structure of the model group had obvious disturbances and a decrease in cell density. ONL cells in the control group, rehmannia glutinosa group, wolfberry group, rehmannia glutinosa + wolfberry group were arranged closely and regularly. Rehmannia glutinosa, and wolfberry could reduce the apoptosis rate of retinal cells (P<0.05). The superoxide dismutase (SOD) activity in the rehmannia glutinosa group, wolfberry group, and the rehmannia glutinosa + wolfberry increased by 8.93%, 16.30%, and 20.57% compared with the model group. GSH-Px activity in the rehmannia glutinosa group, wolfberry group and the rehmannia glutinosa + wolfberry group were all increased by 14.44%, 20.05%, 36.04% compared with the model group, and the differences were statistically significant (P<0.05). The content of MDA in the rehmannia glutinosa + wolfberry group was reduced by 7.60% compared with the model group, and the differences were statistically significant (all P<0.05).Conclusion Rehmannia glutinosa and wolfberry have protective effects on the retinal function and structure of AMD model mice, and the effect of simultaneous intervention is more obvious.

参考文献/References:

[1] MANTHEY A L,CHIU K,SO K F.Effects of Lycium barbarum on the Visual System[J].Int Rev Neurobiol,2017,135:1-27.
[2] WANG K,XIAO J,PENG B,XING F,SO K F,TIPOE G L,et al.Retinal structure and function preservation by polysaccharides of wolfberry in a mouse model of retinal degeneration[J].Sci Rep,2014,4:7601.
[3] XING X,LIU F,XIAO J,SO K F.Neuro-protective mechanisms of Lycium barbarum[J].Neuromolecular Med, 2016,18(3):253-263.
[4] MA L,DOU H L,WU Y Q,HUANG Y M,HUANG Y B,XU X R,et al.Lutein and zeaxanthin intake and the risk of age-related macular degeneration:a systematic review and meta-analysis[J].Br J Nutr,2012,107(3):350-359.
[5] SHEN Z,SHAO J,DAI J,LIN Y,YANG X,MA J,et al.Diosmetin protects against retinal injury via reduction of DNA damage and oxidative stress[J].Toxicol Rep,2015,3(1):78-86.
[6] 李乃谦.熟地黄活性成分药理作用的研究进展[J].中国处方药,2017,15(1):14-15.
LI N Q.Research progress on pharmacological action of active components of radix rehmanniae [J].J China Prescript Drug,2017,15(1):14-15.
[7] 朱妍,徐畅.熟地黄活性成分药理作用研究进展[J].亚太传统医药,2011,11(7):173-175.
ZHU Y,XU C.Pharmacological actions of radix rehmann praeparata and its active components:Research advances[J].Asia-Pacific Tradit Med,2011,11(7):173-175.
[8] MITCHELL P,LIEW G,GOPINATH B,WONG T Y.Age-related macular degeneration[J].Lancet,2018,392(10153):1147-1159.
[9] MARQUIONI-RAMELLA M D,SUBURO A M.Photo-damage,photo-protection and age-related macular degeneration[J].Photochem Photobiol Sci,2015,14(9):1560-1577.
[10] 吴金环,顾红岩,喇孝瑾,吕建东,王亚喇,万英.地黄与熟地黄对糖尿病小鼠血糖血脂的影响[J].中国实验方剂学杂志,2011,17(8):161-163.
WU J H,GU H Y,LA X J,LYU J D,WANG Y L,WAN Y.Effects of rehmanniae radix and rehmanniae radix praeparata on blood glucose and lipid in diabetic mice [J].Chin J Exp Tradit Med Form,2011,17(8):161-163.
[11] 黄冰林,丁淑华,杭丽,郑仕中,李伟,徐新荣.枸杞提取物及其成分叶黄素/玉米黄质在体内外对年龄相关性黄斑变性防治的影响[J].中国中西医结合杂志,2013,33(4):531-537.
HUANG B L,DING S H,HANG L,ZHENG S Z,LI W,XU X R.Prevention and treatment of age-related macular degeneration by extract of fructus lycii and its constituents lutein/zeaxanthin:an in vivo and in vitro experimental research [J].Chin J Integr Trad West Med,2013,33(4):531-537.
[12] TANG L,BAO S,DU Y,JIANG Z,WULIJI A O,REN X,et al.Antioxidant effects of Lycium barbarum polysaccharides on photoreceptor degeneration in the light-exposed mouse retina[J].Biomed Pharmacother,2018,103:829-837.
[13] EELLS J T,GOPALAKRISHNAN S,VALTER K.Near-infrared photobiomodulation in retinal injury and disease[J].Adv Exp Med Biol,2016,854:437-441.
[14] AL-ZAMIL W M,YSAAIN S A.Recent developments in age-related macular degeneration:a review[J].Clin Int Aging,2017,12:1313-1330.
[15] BELLEZZA I.Oxidative stress in age-related macular degeneration:Nrf2 as therapeutic target[J].Front Pharmacol,2018,9:1280.
[16] SINGH N,SRINIVASAN S,MURALIDHARAN V,ROY R,V J,RAMAN R.Prevention of age-related macular degeneration[J].Asia Pac J Ophthalmol (Phila),2017,6(6):520-526.
[17] CAMPOCHIARO P A,STRAUSS R W,LU L,HAFIZ G,WOLFSON Y,SHAH S M,et al.Is there excess oxidative stress and damage in eyes of patients with retinitis pigmentosa?[J].Antioxid Redox Signal,2015,23(7):643-648.
[18] PUNZO C,XIONG W,CEPKO C L.Loss of daylight vision in retinal degeneration:are oxidative stress and metabolic dysregulation to blame[J].J Biol Chem,2012,287(3):1642-1648.
[19] FLETCHER E L,JOBLING A I,GREFERATH U,MILLS S A,WAUGH M,HO T,et al.Studying age-related macular degeneration using animal models[J].Optom Vis Sci,2014,91(8):878-886.
[20] BERROW E J,BARTLETT H E,EPERJESI F,GIBSON J M.The electroretinogram:a useful tool for evaluating age-related macular disease[J].Doc Ophthalmol,2010,121(1):51-62.
[21] YONEKAWA Y,MILLER J W,KIM I K.Age-related macular degeneration:advances in management and diagnosis[J].J Clin Med,2015,4(2):343-359.
[22] HYTTINEN J M T,BLASIAK J,NIITTYKOSKI M,KINNUNEN K,KAUPPINEN A,SALMINEN A,et al.DNA damage response and autophagy in the degeneration of retinal pigment epithelial cells-implications for age-related macular degeneration (AMD)[J].Ageing Res Rev,2017,36(1):64-77.
[23] BALES K L,GROSS A K.Aberrant protein trafficking in retinal degenerations:The initial phase of retinal remodeling[J].Exp Eye Res,2016,150(1):71-80.
[24] JARRETT S G,BOULTON M E.Consequences of oxidative stress in age-related macular degeneration[J].Mol Aspects Med,2012,33(4):399-417.
[25] KAARNIRANTA K,SINHA D,BLASIAK J,KAUPPINEN A,VERB Z,SALMINEN A,et al.Autophagy and heterophagy dysregulation leads to retinal pigment epithelium dysfunction and development of age-related macular degeneration[J].Autophagy,2013,9(7):973-984.
[26] TERLUK M R,KAPPHAHN R J,SOUKUP L M,GONG H,GALLARDO C,MONTEZUMA S R,et al.Investigating mitochondria as a target for treating age-related macular degeneration[J].J Neurosci,2015,35(18):7304-7311.
[27] GOLESTANEH N,CHU Y,XIAO Y Y,STOLERU G L,THEOS A C.Dysfunctional autophagy in RPE,a contributing factor in age-related macular degeneration[J].Cell Death Dis,2017,8(1):e2537.
[28] TOKARZ P,KAARNIRANTA K,BLASIAK J.Role of the cell cycle re-initiation in DNA damage response of post-mitotic cells and its implication in the pathogenesis of neurodegenerative diseases[J].Rejuvenat Res,2016,19(2):131-139.
[29] HANUS J,ANDERSON C,WANG S.RPE necroptosis in response to oxidative stress and in AMD[J].Ageing Res Rev,2015,24(Pt B):286-298.
[30] ABOKYI S,TO C H,LAM T T,TSE D Y.Central role of oxidative stress in age-related macular degeneration:Evidence from a review of the molecular mechanisms and animal models[J].Oxid Med Cell Longev,2020,2020:7901270.
[31] KHAN K N,MAHROO O A,KHAN R S,MOHAMED M D,MCKIBBIN M,BIRD A,et al.Differentiating drusen:Drusen and drusen-like appearances associated with ageing,age-related macular degeneration,inherited eye disease and other pathological processes[J].Prog Retin Eye Res,2016,53(1):70-106.
[32] GRIMM C,WENZEL A,HAFEZI F,YU S,REDMOND T M,REM C E.Protection of Rpe65-deficient mice identifies rhodopsin as a mediator of light-induced retinal degeneration[J].Nat Genet,2000,25(1):63-66.
[33] WENZEL A,GRIMM C,SAMARDZIJA M,REM C E.Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration[J].Prog Retin Eye Res,2005,24(2):275-306.
[34] 苗明三,孙艳红,方晓艳.(怀)熟地黄多糖抗氧化作用[J].中国中医药信息杂志,2002,9(1):32-33.
MIAO M S,SUN Y H,FANG X Y.Studies oil antl-uldatlon capadty of(Hual)radix rehmanlae preparate polysaccharide in aged model mice [J].Chin J Informat Trad Chin Med,2002,9(1):32-33.
[35] XIN Y F,ZHOU G L,DENG Z Y,CHEN Y X,WU Y G,XU P S,et al.Protective effect of Lycium barbarum on doxorubicin-induced cardiotoxicity[J].Phytother Res,2007,21(11):1020-1024.
[36] LI X M,MA Y L,LIU X J.Effect of the Lycium barbarum polysaccharides on age-related oxidative stress in aged mice[J].J Ethnopharmacol,2007,111(3):504-511.

相似文献/References:

[1]范姜砾 王雨生 张鹏.湿性年龄相关性黄斑变性患者血浆中相关抗氧化酶水平测定[J].眼科新进展,2012,32(5):000.
[2]何婷 李根林.视网膜色素上皮层黑色素颗粒对视网膜光损伤保护作用的研究进展[J].眼科新进展,2012,32(12):000.
[3]王毅 李罗翔 李娟 曾庆华.ApoE基因缺失小鼠视网膜及Bruch膜组织形态观察[J].眼科新进展,2013,33(1):000.
[4]徐新荣 仲路 黄冰林 魏源华 周欣 王玲 王富强.年龄相关性黄斑变性血浆蛋白质组学初步研究[J].眼科新进展,2013,33(2):000.
[5]党亚龙 陈彬川 穆雅林 赵满丽 朱豫.i-MP对产生2型脉络膜新生血管的年龄相关性黄斑变性患者视力及黄斑厚度的影响[J].眼科新进展,2013,33(2):000.
[6]王毅 李罗翔 李进辉 李娟 曾庆华.血脂异常ApoE基因缺失小鼠视网膜色素上皮细胞胞浆内黑色素和脂褐素的改变[J].眼科新进展,2013,33(7):000.
[7]罗文婷 孙大卫.血管黏附蛋白-1在眼科疾病中的研究进展[J].眼科新进展,2013,33(8):000.
[8]陆秉文 吴星伟.光动力疗法治疗年龄相关性黄斑变性的研究进展[J].眼科新进展,2013,33(4):000.
[9]栾兰 姚勇.湿性年龄相关性黄斑变性的治疗进展[J].眼科新进展,2013,33(4):000.
[10]胡艳红 祁明信 郭娜 陈胜 柯发杰.渗出型年龄相关性黄斑变性患者外周血CCR3的表达[J].眼科新进展,2013,33(11):000.

备注/Memo

备注/Memo:
国家自然科学基金青年基金(编号:81300791);天津市自然科学基金(编号:18JCYBJC26500);天津市第三批人才?发展特殊支持计划[编号:津人才(2019)11号];天津市卫生系统高层次人才计划(青年医学新锐)[编号:津人才(2018)19号];天津市重点研发计划科技支撑重点项目(编号:S19ZC63957)
更新日期/Last Update: 2021-01-05