[1]曹秀朋,陈霞,郭雅图,等.枸杞子提取物对光诱导视网膜损伤的保护作用[J].眼科新进展,2020,40(6):510-515.[doi:10.13389/j.cnki.rao.2020.0117]
 CAO Xiupeng,CHEN Xia,GUO Yatu,et al.Protective effect of wolfberry extract on light-induced retinal damage[J].Recent Advances in Ophthalmology,2020,40(6):510-515.[doi:10.13389/j.cnki.rao.2020.0117]
点击复制

枸杞子提取物对光诱导视网膜损伤的保护作用/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
40卷
期数:
2020年6期
页码:
510-515
栏目:
实验研究
出版日期:
2020-06-05

文章信息/Info

Title:
Protective effect of wolfberry extract on light-induced retinal damage
作者:
曹秀朋陈霞郭雅图巩一博王雪纯
300020 天津市,天津医科大学眼科临床学院(曹秀朋,巩一博,王雪纯);300020 天津市,天津市眼科医院(陈霞,郭雅图)
Author(s):
CAO Xiupeng1CHEN Xia2GUO Yatu2GONG Yibo1WANG Xuechun1
1.Clinical College of Ophthalmology,Tianjin Medical University,Tianjin 300020,China
2.Tianjin Eye Hospital,Tianjin 300020,China
关键词:
枸杞子提取物光诱导损伤抗氧化剂ARPE-19细胞 视网膜
Keywords:
wolfberry extract light-induced damage antioxidant ARPE-19 cells retina
分类号:
R774
DOI:
10.13389/j.cnki.rao.2020.0117
文献标志码:
A
摘要:
目的 探索枸杞子提取物对人视网膜色素上皮(ARPE-19)细胞及C57BL/6J小鼠视网膜光诱导损伤的保护作用。方法 ARPE-19细胞分为正常细胞对照组,光诱导细胞损伤组,细胞低、中、高剂量组(0.1 g·L-1、0.5 g·L-1、1.0 g·L-1枸杞子提取物+光诱导细胞损伤),测定各组细胞活力以及细胞内活性氧(ROS)含量的变化。40只C57BL/6J小鼠随机分为正常动物对照组,光诱导动物损伤组,动物低、中、高剂量组(280 mg·kg-1、370 mg·kg-1、460 mg·kg-1枸杞子提取物+光诱导动物损伤组),每组8只。各剂量枸杞子提取物干预组小鼠在6周龄开始给予枸杞子提取物灌胃,8周后再给予10 000 lux光照射24 h;光照结束后ERG评估各组小鼠视网膜功能,OCT检测视网膜外核层(ONL)厚度,FFA检测视网膜血管渗漏情况,HE染色后对视网膜ONL细胞进行计数,同时检测血清中丙二醛(MDA)含量和超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性。结果 光诱导细胞损伤组ARPE-19细胞活力下降为正常细胞对照组的61.88%,细胞内ROS含量为正常细胞对照组的1.52倍;细胞低、中、高剂量组ARPE-19细胞活力较光诱导细胞损伤组均明显上升,细胞内ROS含量均明显下降,并均呈剂量依赖性(均为P<0.05)。与动物对照组相比,光诱导动物损伤组小鼠ERG暗适应a波、b波振幅和明适应b波振幅均明显下降,动物低、中、高剂量组各波的振幅均得到不同程度改善。光诱导动物损伤组小鼠视网膜出现萎缩灶、血管渗漏和血管末端成珠样结构,视网膜ONL厚度变薄,为(52.18±4.23) μm,ONL每列细胞数明显减少,为(17.63±1.30)个;动物低、中、高剂量组小鼠视网膜病理改变及视网膜ONL厚度与ONL每列细胞数均得到不同程度改善,尤其动物高剂量组改善最为明显,ONL厚度为(59.72±2.76)μm, ONL每列细胞数为(20.00±1.51)个,与光诱导动物损伤组相比差异均有统计学意义(P=0.007、0.004)。相对于光诱导动物损伤组,动物低、中、高剂量组小鼠血清SOD、GSH-Px活性均明显提高,MDA含量均明显下降,且均呈剂量依赖性(均为P<0.05)。结论 枸杞子提取物可以一定程度上保护视网膜免受光损伤。
Abstract:
Objective To explore the protective effects of wolfberry extract on human retinal pigment epithelial (ARPE-19) cell damage, and light-induced retinal damage of C57BL/6J mice. Methods ARPE-19 cells were divided into 5 groups: normal cell control group, light-induced cell damage group, light-induced cell damage + 0.1 g·L-1 wolfberry extract group (cell low dose group), light-induced cell damage + 0.5 g·L-1 wolfberry extract group cell (medium dose group), light-induced cell damage + 1.0 g·L-1 wolfberry extract group (cell high dose group). The changes of cell viability and intracellular reactive oxygen species (ROS) content in each group were measured. Forty C57BL/6J mice were randomly divided into normal animal control group, light-induced animal damage group, 280 mg·kg-1 wolfberry extract + light-induced animal damage group (animal low dose group), 370 mg·kg-1 wolfberry extract + light-induced animal damage group (animal middle dose group), 460 mg·kg-1 wolfberry extract + light-induced animal damage group (animal high dose group), 8 mice in each group. The mice at the age of 6 weeks in each dose of wolfberry extract intervention group were given intragastric administration of wolfberry extract for 8 weeks, and then irradiated with light intensity of 10 000 lux for 24 h. After light exposure, the retinal function was evaluated by ERG, the retinal outer nuclear layer (ONL) thickness was detected by OCT, the retinal vascular leakage was detected by FFA, and the retinal ONL cells were counted after HE staining. The levels of malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in serum were measured. Results Light-induced damage decreased the viability of ARPE-19 cells to 61.88% of the normal cell control group, and the intracellular ROS level was 1.52 times higher than that of the normal cell control group. After intervention with wolfberry extract, the ARPE-19 cell activity was significantly higher than that of the light-induced cell damage group, and the intracellular ROS content decreased significantly in a dose-dependent manner (all P<0.05). Compared with the normal animal control group, light-induced damage significantly decreased the amplitudes of dark adaptive ERG a-wave and b-wave and light adaptive b-wave in mice. Different doses of wolfberry extract could effectively protect the amplitudes of a-wave and b-wave of ERG in mice. Light-induced damage also caused cellular atrophy, vascular leakage and terminal vascular bead-like changes in the retina of mice. The thickness of retinal ONL was (52.18±4.23)μm and became thinner, the number of cells per row was 17.63±1.30 and was significantly decreased. The extract of wolfberry could improve the pathological changes of retina, the thickness of ONL and the number of cells per row of ONL in mice with light-induced damage, especially in the high dose group [with ONL thickness of (59.72±2.76)μm, P=0.007; with ONL cells per row of 20.00±1.51, P=0.004]. At the same time, the extract of wolfberry could significantly increase the content of SOD and GSH-Px and decrease the content of MDA in serum of light-induced damaged mice in a dose-dependent manner (all P<0.05).Conclusion Wolfberry extract can protect retina from light-induced damage.

参考文献/References:

[1] LIM L S,MITCHELL P P,SEDDON J M,HOLZ F G,WONG T Y.Age-related macular degeneration [J].Nurse Pract Forum,2012,379(9827):1728-1738.
[2] BRESSLER N M.Age-related macular degeneration is the leading cause of blindness [J].JAMA,2004,291(15):1900-1901.
[3] BHUTTO I,LUTTY G.Understanding age-related macular degeneration (AMD):relationships between the photoreceptor-retinal pigment epithelium-Bruch’s membrane-choriocapillaris complex [J].Mol Aspects Med,2012,33(4):295-317.
[4] CHAN C M,HUANG J H,LIN H H,CHIANG H S,CHEN B H,HONG J Y,et al.Protective effects of (-)-epigallocatechin gallate on UVA-induced damage in ARPE19 cells [J].Mol Vis,2008,14:2528-2534.
[5] YAO J,BI H E,SHENG Y,CHENG L B,WENDU R L,WANG C H,et al.Ultraviolet (UV) and hydrogen peroxide activate ceramide-ER stress-AMPK signaling axis to promote retinal pigment epithelium (RPE) cell apoptosis [J].Int J Mol Sci,2013,14(5):10355-10368.
[6] NOELL W K,WALKER V S,KANG B S,BERMAN S.Retinal damage by light in rats [J].Invest Ophthalmol Vis Sci,1966,5(5):450-473.
[7] SHAHINFAR S,EDWARD D P,TSO M O.A pathologic study of photoreceptor cell death in retinal photic injury [J].Curr Eye Res,1991,10(1):47-59.
[8] MURTHY R K,RAVI K,BALAIYA S,BRAR V S,CHALAM K V.Lutein protects retinal pigment epithelium from cytotoxic oxidative stress [J].Cutan Ocul Toxicol,2014,33(2):132-137.
[9] GLICKMAN R D.Ultraviolet phototoxicity to the retina [J].Eye Contact Lens,2011,37(4):196-205.
[10] RODUIT R,SCHORDERET D F.MAP kinase pathways in UV-induced apoptosis of retinal pigment epithelium ARPE19 cells [J].Apoptosis,2008,13(3):343-353.
[11] ROBERTS J E.Ultraviolet radiation as a risk factor for cataract and macular degeneration [J].Eye Contact Lens,2011,37(4):246-249.
[12] TANG H L,CHEN C,WANG S K,SUN G J.Biochemical analysis and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L [J].Int J Biol Macromol,2015,77:235-242.
[13] LUO Q,LI Z,HUANG X,YAN J,ZHANG S,CAI Y Z.Lycium barbarum polysaccharides:Protective effects against heat-induced damage of rat testes and H2O2-induced DNA damage in mouse testicular cells and beneficial effect on sexual behavior and reproductive function of hemicastrated rats [J].Life Sci,2006,79(7):613-621.
[14] YANG D M,ZHANG J Q,FEI Y F.Lycium barbarum polysaccharide attenuates chemotherapy- induced ovarian injury by reducing oxidative stress [J].J Obstet Gynaecol Res,2017,43(10):1621-1628.
[15] CHEN S,LIANG L,WANG Y,DIAO J,ZHAO C,CHEN G,et al.Synergistic immunotherapeutic effects of Lycium barbarum polysaccharide and interferon-α2b on the murine Renca renal cell carcinoma cell line in vitro and in vivo [J].Mol Med Rep,2015,12(5):6727-6737.
[16] DU M,HU X,KOU L,ZHANG B,ZHANG C.Lycium barbarum polysaccharide mediated the antidiabetic and antinephritic effects in diet-streptozotocin-induced diabetic sprague dawley rats via regulation of NF-κB[J].Biomed Res Int,2016,2016:3140290.
[17] TANAKA J,NAKANISHI T,OGAWA K,TSURUMA K,SHIMAZAWA M,SHIMODA H,et al.Purple rice extract and anthocyanidins of the constituents protect against light-induced retinal damage in vitro and in vivo[J].J Agric Food Chem,2011,59(2):528-536.
[18] SONG D,SONG J,WANG C,LI Y,DUNAIEF J L.Berberine protects against light-induced photoreceptor degeneration in the mouse retina[J].Exp Eye Res,2016,145:1-9.
[19] LI S Y,YANG D,YEUNG C M,YU W Y,CHANG R C,SO K F,et al.Lycium barbarum polysaccharides reduce neuronal damage,blood-retinal barrier disruption and oxidative stress in retinal ischemia-reperfusion injury [J].PLoS ONE,2011,6(1):e16380.
[20] ORGANISCIAK D T,WANG H M,LI Z Y,TSO M O.The protective effect of ascorbate in retinal light damage of rats [J].Invest Ophthalmol Vis Sci,1985,26(11):1580-1588.
[21] WENZEL A,GRIMM C,SAMARDZIJA M,REME C E.Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration [J].Prog Retin Eye Res,2005,24(2):275-306.
[22] SILVN J M,REGUERO M,DE PASCUAL-TERESA S.A protective effect of anthocyanins and xanthophylls on UVB-induced damage in retinal pigment epithelial cells [J].Food Funct,2016,7(2):1067-1076.
[23] ZHAO L,WANG C,SONG D,LI Y,SONG Y,SU G,et al.Systemic administration of the antioxidant-iron chelator alpha-lipoic acid protects against light-induced photoreceptor degeneration in the mouse retina[J].Invest Ophthalmol Vis Sci,2014,55(9):5979-5988.
[24] ISHIHARA T,KAIDZU S,KIMURA H,KOYAMA Y,MATSUOKA Y,OHIRA A.Protective effect of highly polymeric a-type proanthocyanidins from seed shells of japanese horse chestnut (aesculus turbinata BLUME) against light-induced oxidative damage in rat retina[J].Nutrients,2018,10(5):593.
[25] TANITO M,KAIDZU S,OHIRA A,ANDERSON R E.Topography of retinal damage in light-exposed albino rats[J].Exp Eye Res,2008,87 (3):292-295.

备注/Memo

备注/Memo:
国家自然科学基金青年基金项目(编号:81300791) ;天津市自然科学基金(编号:18JCYBJC26500);天津市第三批人才·发展特殊支持计划;天津市卫生系统高层次人才计划(青年医学新锐)
更新日期/Last Update: 2020-06-05