[1]陈文静,刘平.miRNA在白内障形成中的作用[J].眼科新进展,2020,40(5):497-500.[doi:10.13389/j.cnki.rao.2020.0114]
 CHEN Wenjing,LIU Ping.The role of miRNA in cataract formation[J].Recent Advances in Ophthalmology,2020,40(5):497-500.[doi:10.13389/j.cnki.rao.2020.0114]
点击复制

miRNA在白内障形成中的作用/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
40卷
期数:
2020年5期
页码:
497-500
栏目:
文献综述
出版日期:
2020-05-05

文章信息/Info

Title:
The role of miRNA in cataract formation
作者:
陈文静刘平
150001 黑龙江省哈尔滨市,哈尔滨医科大学附属第一医院眼科医院
Author(s):
CHEN WenjingLIU Ping
Eye Hospital,the First Affiliated Harbin Medical University,Harbin 150001,Heilongjiang Province,China
关键词:
微小RNA白内障晶状体晶状体上皮细胞
Keywords:
microRNA cataract lens lens epithelial cells
分类号:
R776.1
DOI:
10.13389/j.cnki.rao.2020.0114
文献标志码:
A
摘要:
白内障是全球重要的致盲原因之一,其形成与衰老、紫外线照射、外伤等多种因素有关。白内障的治疗和预防是改善致盲率的重点,因此掌握白内障形成的机制非常重要。微小RNA(microRNA,miRNA)是一种影响基因及蛋白表达的非编码RNA。已经发现多种miRNA与白内障有关,其作为新的诊断标记物和治疗靶点具有潜在应用前景。本文对近年miRNA在白内障形成中的作用的研究进展进行综述。
Abstract:
Cataract is one of the important causes of blindness in the world, and its occurence is related to aging, ultraviolet radiation, trauma and other factors. The treatment and prevention of cataract is the key to improving the blindness rate, so it is very important to grasp the mechanism of cataract formation. MicroRNA (miRNA) is a non-coding RNA that affects the expression of genes and proteins. A variety of miRNAs have been found to be involved in cataract, and they have potential applications as new diagnostic markers and therapeutic targets. This article reviews the research progress of miRNA in cataract formation in recent years.

参考文献/References:

[1] YUAN M,HAN Y,FANG Y,CHU C I.Childbearing may increase the risk of nondiabetic cataract in Chinese women’s old age[J].J Ophthalmol,2015,2015:385815.
[2] BAE J H,SHIN D S,LEE S C,HWANG I C.Sodium intake and socioeconomic status as risk factors for development of age-related cataracts: The Korea National Health and Nutrition Examination Survey[J].PLoS One,2015,10(8):e0136218.
[3] BERBER P,GRASSMANN F,KIEL C,WEBER B H.An eye on age-related macular degeneration: the role of micrornas in disease pathology[J].Mol Diagn Ther,2017,21(1):31-43.
[4] ORANG A V,BARZEGARI A .MicroRNAs in colorectal cancer: from diagnosis to targeted therapy[J].Asian Pac J Cancer Prev,2014,15(17):6989-6999.
[5] GU S,RONG H,ZHANG G,KANG L,YANG M,GUAN H.Functional SNP in 3’-UTR microrna-binding site of znf350 confers risk for age-related cataract[J].Hum Mutat,2016,37(11):1223-1230.
[6] KUMAR S,VIJAYAN M,BHATTI J S,REDDY P H.MicroRNAs as peripheral biomarkers in aging and age-related diseases[J].Prog Mol Biol Transl Sci,2017,146:47-94.
[7] LIANG N,ZHOU X,ZHAO M,ZHAO D,ZHU Z,LI S,YANG H.Down-regulation of microRNA-26b modulates non-small cell lung cancer cells chemoresistance and migration through the association of PTEN[J].Acta Biochim Biophys Sin,2015,47(7):530-538.
[8] KHAN S Y,HACKETT S F,LEE M C,POURMAND N,TALBOT C C J,RIAZUDDIN S A.Transcriptome profiling of developing murine lens through RNA sequencing[J].Invest Ophthal Vis Sci,2015,56(8):4919-4926.
[9] CHUNZI L,HONGBO H .Downregulation of miR-26b impact on lens epithelial cells in cataract rat [J].Int J Clin Exp Pathol,2016,9(9):8784-8790.
[10] BAI J,YU N,MU H,DONG L,ZHANG X.Histidine protects human lens epithelial cells against H2O2-induced oxidative stress injury through the NF-кB pathway[J].J Cell Biochem,2018,119(2):1637-1645.
[11] SHALKAMI A S,HASSAN M I A,ABD EL-GHANY A A.Perindopril regulates the inflammatory mediators,NF-κB/TNF-α/IL-6,and apoptosis in cisplatin-induced renal dysfunction.[J].Naunyn Schmiedebergs Arch Pharmacol,2018,391(11):1247-1255.
[12] CHEN X,XIAO W,CHEN W,LIU X,WU M,BO Q,et al.MicroRNA-26a and -26b inhibit lens fibrosis and cataract by negatively regulating Jagged-1/Notch signaling pathway[J].Cell Death Differ,2017,24(8):1431-1442.
[13] LIANG H,XU C,PAN Z,ZHANG Y,XU Z,CHEN Y,et al.The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis[J].Mol Ther,2014,22(6):1122-1133.
[14] SARAVANAMUTHU S S,LE T T,GAO C Y,COJOCARU R I,PANDIYAN P,LIU C,et al.Conditional ablation of the Notch2 receptor in the ocular lens[J].Dev Biol,2012,362(2):219-229.
[15] LI Q L,ZHANG H Y,QIN Y J,MENG Q L,YAO X L,GUO H K.MicroRNA-34a promoting apoptosis of human lens epithelial cells through down-regulation of B-cell lymphoma-2 and silent information regulator[J].Int J Ophthalmol,2016,9(11):1555-1560.
[16] WANG S,GUO C,YU M,NING X,YAN B,ZHAO J,et al.Identification of H2O2 induced oxidative stress associated microRNAs in HLE-B3 cells and their clinical relevance to the progression of age-related nuclear cataract[J].BMC Ophthalmol,2018,18(1):93.
[17] ZHENG T,LU Y .SIRT1 protects human lens epithelial cells against oxidative stress by inhibiting p53-dependent apoptosis[J].Curr Eye Res,2016,41(8):1068-1075.
[18] FAN F,ZHUANG J,ZHOU P,LIU X,LUO P.MicroRNA-34a promotes mitochondrial dysfunction-induced apoptosis in human lens epithelial cells by targeting Notch2[J].Oncotarget,2017,8(66):110209-110220.
[19] SUN Y M,LIN K Y,CHEN Y Q .Diverse functions of miR-125 family in different cell contexts[J].J Hematol Oncol,2013,6(1):6.
[20] QIN Y,ZHAO J,MIN X,WANG M,LUO W,WU D,et al.MicroRNA-125b inhibits lens epithelial cell apoptosis by targeting p53 in age-related cataract[J].Biochim Biophys Acta,2014,1842(12):2439-2447.
[21] ZHAO Y,LI X,ZHU S .rs78378222 polymorphism in the 3’-untranslated region of TP53 contributes to development of age-associated cataracts by modifying microRNA-125b-induced apoptosis of lens epithelial cells[J].Mol Med Rep,2016,14(3):2305-2310.
[22] HE G Y,HU J L,ZHOU L,ZHU X H,XIN S N,ZHANG D,et al.The FOXD3/miR-214/MED19 axis suppresses tumour growth and metastasis in human colorectal cancer[J].Br J Cancer,2016,115(11):1367-1378.
[23] JIN X,JIN H,SHI Y,GUO Y,ZHANG H.Long non-coding RNA KCNQ1OT1 promotes cataractogenesis via miR-214 and activation of the caspase-1 pathway[J].Cell Physiol Biochem,2017,42(1):295-305.
[24] CHEN B,MA J,LI C,WANG Y.Long noncoding RNA KCNQ1OT1 promotes proliferation and epithelial-mesenchymal transition by regulation of SMAD4 expression in lens epithelial cells[J].Mol Med Rep,2018,18(1):16-24.
[25] LU B,CHRISTENSEN I T,MA L W,WANG X L,JIANG L F,WANG C X, et al.miR-24-p53 pathway evoked by oxidative stress promotes lens epithelial cell apoptosis in age-related cataracts[J].Mol Med Rep,2018,17(4):5021-5028.
[26] REN H,TAO H,GAO Q,SHEN W,NIU Z,ZHANG J,et al.MiR-326 antagomir delays the progression of age-related cataract by upregulating FGF1-mediated expression of betaB2-crystallin[J].Biochem Biophys Res Commun,2018,505(2):505-510.
[27] ZENG K,FENG Q G,LIN B T,MA D H,LIU C M.Effects of microRNA-211 on proliferation and apoptosis of lens epithelial cells by targeting SIRT1 gene in diabetic cataract mice[J].Biosci Rep,2017,37(4):BSR20170695.
[28] ZHANG L,CHENG R,HUANG Y.miR-30a inhibits BECN1-mediated autophagy in diabetic cataract[J].Oncotarget,2017,8(44):77360-77368.
[29] XU C G,YANG M F,FAN J X,WANG W.miR-30a and miR-205 are downregulated in hypoxia and modulate radiosensitivity of prostate cancer cells by inhibiting autophagy via TP53INP1[J].Eur Rev Med Pharmacol Sci,2016,20(8):1501-1508.
[30] LIN C,WANG Z,LI L,HE Y,FAN J,LIU Z,et al.The role of autophagy in the cytotoxicity induced by recombinant human arginase in laryngeal squamous cell carcinoma[J].Appl Microbiol Biotechnol,2015,99(20):8487-8494.
[31] ZHANG L,WANG Y,LI W,TSONIS P A,LI Z,XIE L,et al.microRNA-30a regulation of epithelial-mesenchymal transition in diabetic cataracts through targeting SNAI1[J].Sci Rep,2017,7(1):1117.
[32] WU C R,YE M,QIN L,YIN Y,PEI C.Expression of lens-related microRNAs in transparent infant lenses and congenital cataract[J].Int J Ophthalmol,2017,10(3):361-365.
[33] BYKHOVSKAYA Y,SELDIN M F,LIU Y,RANSOM M,LI X,RABINOWIZ Y S.Independent origin of c.57 C > T mutation in mir184 associated with inherited corneal and lens abnormalities[J].Ophthalmic Genet,2015,36(1):95-97.
[34] BYKHOVSKAYA Y,CANEDO A L C,WRIGHT K W,RABINOWIZ Y S.C.57 C > T Mutation in MIR 184 is responsible for congenital cataracts and corneal abnormalities in a five-generation family from Galicia,Spain[J].Ophthalmic Genet,2015,36(3):244-247.
[35] KORHAN P,ERDAL E,ATABEY N.MiR-181a-5p is downregulated in hepatocellular carcinoma and suppresses motility,invasion and branching-morphogenesis by directly targeting c-Met[J].Biochem Biophys Res Commun,2014,450(4):1304-1312.
[36] DONG N,TANG X,XU B.MiRNA-181a inhibits the proliferation,migration,and epithelial-mesenchymal transition of lens epithelial cells[J].Invest Ophthalmol Vis Sci,2015,56(2):993-1001.
[37] KUBO E,SHIBATA S,SHIBATA T,KIYOKAWA E,SASAKI H,SINGH D P.FGF2 antagonizes aberrant TGFβ regulation of tropomyosin: role for posterior capsule opacity[J].J Cell Mol Med,2017,21(5):916-928.

相似文献/References:

[1]乔建治 张永喜.抗青光眼术后白内障行不同切口超声乳化术的临床疗效分析[J].眼科新进展,2012,32(4):000.
[2]吴星.年龄相关性白内障患者超声乳化手术前后对比敏感度分析[J].眼科新进展,2012,32(6):000.
[3]王勇 叶应嘉 鲍先议 周龑丽 许荣 彭婷婷 曾志富.同轴微小切口超声乳化吸出术在青光眼滤过术后白内障摘出术中的应用[J].眼科新进展,2012,32(7):000.
[4]徐威.注射器针头囊袋内吸附劈核法在白内障手术中的应用[J].眼科新进展,2012,32(7):000.
[5]冉文瑛 陈静 张树利.抗青光眼术后不同角膜切口白内障超声乳化术对角膜屈光状态的影响[J].眼科新进展,2012,32(7):000.
[6]王运.常规连续模式超声乳化术与爆破模式冷超声乳化术治疗白内障的临床疗效比较[J].眼科新进展,2012,32(11):000.
[7]郭照洪 王宏 宋爱平 文译 侯祺 解柳.超声乳化白内障摘出联合人工晶状体植入治疗超高度轴性近视白内障患者的临床疗效[J].眼科新进展,2013,33(1):000.
[8]刘珣 王欣玲 柏全豪 张劲松 阎启昌.IOLMaster与四种人工晶状体屈光度计算公式的准确性研究[J].眼科新进展,2013,33(2):000.
[9]张灿伟 黄旭东 姜雅琴 高婧 孙先勇 张杰 任建涛.α晶状体蛋白抗体与超声乳化术后前房炎症反应的相关性[J].眼科新进展,2013,33(6):000.
[10]唐东永 李霞 梁皓 何剑 谭少健.应用超声生物显微镜观察Bigbag人工晶状体在高度近视眼囊袋内的稳定性[J].眼科新进展,2013,33(6):000.
[11]李华健,李鹏飞,陈雨欣,等.环状RNA在眼科疾病发生发展中的作用机制研究进展[J].眼科新进展,2022,42(9):739.[doi:10.13389/j.cnki.rao.2022.0152]
 LI Huajian,LI Pengfei,CHEN Yuxin,et al.Research progress on the effect of circRNA in the occurrence and development of ophthalmic diseases[J].Recent Advances in Ophthalmology,2022,42(5):739.[doi:10.13389/j.cnki.rao.2022.0152]

备注/Memo

备注/Memo:
国家自然科学基金资助项目(编号:81470618);黑龙江省青年科学基金项目(编号:QC2013C099),黑龙江省自然科学基金资助项目(编号:H2016038) ; 黑龙江省博士后科研启动金资助(编号:LBH-Q15102)
更新日期/Last Update: 2020-05-05