[1]张行,张毅,吴迪,等.人工角膜载体的体外构建及生物相容性研究[J].眼科新进展,2019,39(10):906-910.[doi:10.13389/j.cnki.rao.2019.0206]
 ZHANG Hang,ZHANG Yi,WU Di,et al.Construction of artificial cornea stent in vitro and its biocompatibility[J].Recent Advances in Ophthalmology,2019,39(10):906-910.[doi:10.13389/j.cnki.rao.2019.0206]
点击复制

人工角膜载体的体外构建及生物相容性研究/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
39卷
期数:
2019年10期
页码:
906-910
栏目:
实验研究
出版日期:
2019-10-05

文章信息/Info

Title:
Construction of artificial cornea stent in vitro and its biocompatibility
作者:
张行张毅吴迪高维奇关立南
150000 黑龙江省哈尔滨市,哈尔滨医科大学附属第一医院眼科
Author(s):
ZHANG HangZHANG YiWU DiGAO Wei-QiGUAN Li-Nan
Department of Ophthalmology,the First Affiliated Hospital of Harbin Medical University,Harbin 150000,Heilongjiang Province,China
关键词:
蚕丝蛋白壳聚糖组织工程角膜移植角膜上皮细胞角膜基质细胞
Keywords:
silk fibroinchitosantissue engineeringcorneal transplantationcorneal epithelial cellscorneal stromal cells
分类号:
R772
DOI:
10.13389/j.cnki.rao.2019.0206
文献标志码:
A
摘要:
目的 应用壳聚糖(chitosan,CS)和蚕丝蛋白(silk fibroin,SF)构建组织工程角膜基质,探讨不同比例的CS和 SF共混膜的生物特性,为以后的角膜移植奠定基础。方法 将SF和CS按体积比3∶1和4∶1混合,体外构建具有相应器官特征的角膜基质层;体外培养原代兔角膜基质及上皮细胞,检测细胞分布情况和载体膜片的物理特性;免疫组织化学法测定细胞表型和分布情况,CCK-8试剂盒测定载体膜片毒性,电镜下观察细胞结构形态和附着情况,将构建的膜片植入兔板层角膜中检测组织生物相容性。结果 载体膜片的吸水率均在90%左右,明显强于天然角膜,抗拉力SF/CS 3∶1组为 0.90±0.02,SF/CS 4∶1组为 1.30±0.05,透光率均大于60%,且抗拉力和透光率随着CS含量增加而增强,但与天然角膜组织间仍存在差异。与载体膜片共培养的细胞在培养2周后,电镜下可见膜片上形成致密的细胞层,重构的板层角膜结构与天然角膜相似。CCK-8法检测结果显示,合成膜无明显毒性。免疫组织化学染色结果显示,培养出的基质细胞形态与天然角膜相似。动物板层移植术后,裂隙灯观察载体膜片组术后半个月内充血消失,无明显的前房炎症反应,术后1个月拆线时无明显新生血管。免疫组织化学法检测术后病理组织未发现CD4+、CD8+、CD31+T细胞浸润。结论 CS-SF可以用于组织工程角膜基质的构建,这为重建角膜基质提供了方向。
Abstract:
Objective To establish tissue engineered corneal stroma with chitosan (CS) and silk fibroin (SF) and explore the biological characteristics of CS and SF blend membranes with different proportions for corneal transplantation in the future.Methods SF and CS were combined at 3∶1 and 4∶1 to construct corneal stroma with corresponding organ characteristics in vitro.The primary rabbit corneal stroma and epithelial cells were cultured in vitro for the detection of cell step and physical properties of carrier membrane.Immunohistochemical methods was used to determine cell phenotype and distribution,while CCK-8 kit for cytotoxicity determination.The morphology and adhesion of the cells were observed with electron microscopy.The constructed diaphragm was implanted into the lamellar cornea of rabbits to detect the biocompatibility.Results The water absorption of the carrier diaphragm was about 90%,which was significantly stronger than that of the natural cornea.The tensile strength of the carrier diaphragm was 0.90±0.02 in the SF/CS 3∶1 group and 1.30±0.05 in the SF/CS 4∶1 group,and the transmittance of the carrier diaphragm was over 60%.The tensile strength and transmittance increased with the increase of CS content,but there were still differences between the carrier diaphragm and the natural corneal tissue.After cultured for 2 weeks with the carrier membrane,cells had a dense cell layer on the membrane with electron microscope,and the reconstructed lamellar corneal structure was similar to that of the native cornea.CCK8 showed no obvious toxicity of synthetic membranes.Immunohistochemical results showed that the morphology of cultured stromal cells was similar to that of natural cornea.After lamellar transplantation,the slit lamp showed the blood congestion disappeared within half a month after operation,and there was no obvious inflammation reaction in the anterior chamber.There was no obvious neovascularization at the time of thread removal one month after operation.No infiltration of CD4+,CD8+,CD31+T cells was detected by immunohistochemistry.Conclusion It is found that CS-SF can be used to construct tissue-engineered corneal stroma,which can provide direction for corneal stroma reconstruction.

参考文献/References:

[1] LANGER R,VACANTI J P.Tissue engineering[J].Science,1993,260(5110):920-926.
[2] ALTMAN G H,DIAZ F,JAKUBA C,CALABRO T,HORAN R L,CHEN J,et al.Silk-based biomaterials[J].Biomaterials,2003,24(3):401-416.
[3] MURPHY A R,KAPLAN D L.Biomedical applications of chemically-modified silk fibroin[J].J Mater Chem,2009,19(36):6443-6450.
[4] VEPARI C,KAPLAN D L.Silk as a biomaterial[J].Prog Polym Sci,2007,32(8-9):991-1007.
[5] PAVINATTO F J,CASELII L,OLIVERIRA O N.Chitosan in nanotructuredthin films[J].Biomacromolecules,2010,11(8):1897-1908.
[6] LIU Y,GRIFFITH M,WATSKY M A,FORRESTER J V,KUFFOVA L,GRANT D,et al.Properties of porcine and recombinant human collagen matrices for optically clear tissue engineering applications[J].Biomacromolecules,2006,7(6):1819-1828.
[7] ALTMAN A M,YAN Y,MATTHIAS N,BAI X,RIOS C,MATHUR A B,et al,IFATS collection:human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model[J].Stem Cells,2009,27(1):250-258.
[8] SHE Z,JIN C,HUANG Z,ZHANG B,FENG Q,XU Y.Silk fibroin/chitosan scaffold:preparation,characterization,and culture with HepG2 cell[J].J Mater Sci Mater Med,2008,19(12):3545-3553.
[9] LUANGBUDNARK W,VIYOCH J,LAUPATTARAKASEM W,SURAKUNPRAPHA P,LAUPATTARAKSEM P.Properties and biocompatibility of chitosan and silk fibroin blend films for application in skin tissue engineering[J].Scientific World Journal,2012,2012:697201.
[10] DENG J,SHE R,HUANG W,DONG Z,MO G,LIU B.A silk fibroin/chitosan scaffold in combination with bone marrow-derived mesenchymal stem cells to repair cartilage defects in the rabbit knee[J].J Mater Sci Mater Med,2013,24(8):2037-2046.
[11] GU Z,XIE H,HUANG C,LI L,YU X.Preparation of chitosan/silk fibroin blending membrane fixed with alginate dialdehyde for wound dressing[J].Int J Biol Macromol,2013,58(7):121-126.
[12] LIMA P A,RESENDE C X,SOARES G D,ANSELME K,ALMEIDA L E.Preparation,characterization and biological test of 3D-scaffolds based on chitosan,fibroin and hydroxyapatite for bone tissue engineering[J].Mater Sci Eng C Mater Biol Appl,2013,33(6):3389-3395.
[13] GUPTA V,MUN G H,CHOI B,ASEH A,MILDRED L,PATEL A,et al.Repair and reconstruction of a resected tumor defect using a composite of tissue flap-nanotherapeutic-silk fibroin and chitosan scaffold[J].Ann Biomed Eng,2011,39(9):2374-2387.
[14] CHEN Y H,WANG I J,YOUNG T H.Formation of keratocyte spheroids on chitosan-coated surface can maintain keratocyte phenotypes[J].Tissue Eng Part A,2009,15(8):2001-2013.
[15] HARKIN D G,GEORGE K A,MADDEN P W,SCHWAB I R,HUTMACHER D W,CHIRILA T V.Silk fibroin in ocular tissue reconstruction[J].Biomaterials,2011,32(10):2445-2458.

相似文献/References:

[1]唐大川 杨红.壳聚糖对分层及纯化培养的视网膜神经节细胞生长的促进作用[J].眼科新进展,2012,32(8):000.
[2]魏红领,刘韶瑞,陆宁.雷帕霉素-壳聚糖-海藻酸钙缓释微球抑制青光眼滤过术区瘢痕增殖的实验研究[J].眼科新进展,2016,36(2):110.[doi:10.13389/j.cnki.rao.2016.0030]
 WEI Hong-Ling,LIU Shao-Rui,LU Ning.Experimental study on anti-proliferation of rapamycinchitosan-microspheres sustained release microspheres during glaucoma filtering surgery in rabbit[J].Recent Advances in Ophthalmology,2016,36(10):110.[doi:10.13389/j.cnki.rao.2016.0030]
[3]姜晓蕾,杨朝忠,韩宝芹,等.壳聚糖及其衍生物作为组织工程角膜支架的研究进展[J].眼科新进展,2017,37(4):392.[doi:10.13389/j.cnki.rao.2017.0100]
 JIANG Xiao-Lei,YANG Chao-Zhong,HAN Bao-Qin,et al.Research advances in chitosan and its derivatives as scaffold for corneal tissue engineering[J].Recent Advances in Ophthalmology,2017,37(10):392.[doi:10.13389/j.cnki.rao.2017.0100]
[4]黄智,周怀胜,许扬扬,等.载汉防己甲素壳聚糖纳米微球的制备及其对人翼状胬肉细胞增殖的抑制作用[J].眼科新进展,2018,38(3):226.[doi:10.13389/j.cnki.rao.2018.0052]
 HUANG Zhi,ZHOU Huai-Sheng,XU Yang-Yang,et al.Preparation of chitosan nano-particles loaded tetrandrine and its inhibitory effects on the proliferation of human pterygium fibroblast cells[J].Recent Advances in Ophthalmology,2018,38(10):226.[doi:10.13389/j.cnki.rao.2018.0052]

备注/Memo

备注/Memo:
国家自然科学基金资助(编号:81400438);黑龙江省自然科学基金面上项目(编号:H2016007);黑龙江省青年科学基金项目(编号:QC2012C096)
更新日期/Last Update: 2019-10-12