[1]刘阳,兰长骏,廖萱.近视的表观遗传学研究[J].眼科新进展,2018,38(10):909-912.[doi:10.13389/j.cnki.rao.2018.0215]
 LIU Yang,LAN Chang-Jun,LIAO Xuan.Review progress on epigenetics of myopia[J].Recent Advances in Ophthalmology,2018,38(10):909-912.[doi:10.13389/j.cnki.rao.2018.0215]
点击复制

近视的表观遗传学研究/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
38卷
期数:
2018年10期
页码:
909-912
栏目:
近视专题
出版日期:
2018-10-05

文章信息/Info

Title:
Review progress on epigenetics of myopia
作者:
刘阳兰长骏廖萱
637000 四川省南充市,川北医学院附属医院眼科,川北医学院眼视光学系
Author(s):
LIU YangLAN Chang-JunLIAO Xuan
Department of Ophthalmology,Affiliated Hospital of North Sichuan Medical College;Department of Ophthalmology & Optometry,North Sichuan Medical College,Nanchong 637000,Sichuan Province,China
关键词:
表观遗传学近视DNA甲基化miRNA组蛋白修饰
Keywords:
epigeneticsmyopiaDNA methylationmiRNAhistone modification
分类号:
R778.1
DOI:
10.13389/j.cnki.rao.2018.0215
文献标志码:
A
摘要:
近视是全球范围内最常见的一类屈光不正,在过去几十年间,近视发病率逐年上升而发病年龄趋于提前,已成为重大的公共卫生问题。近视被认为是由遗传因素和环境因素以及基因-环境交互作用影响的多因素复杂疾病,尽管大量的实验研究对近视的发生发展机制进行了探索,但其确切病因及病理机制仍未阐明。表观遗传学作为目前生物医学研究的热点,加深了人们对近视发生发展机制的认识。本文就近年来近视表观遗传方面的研究进行综述。
Abstract:
Myopia is the most common type of refractive error in the world.In the past few decades,the incidence of myopia has increased year by year and the age of onset has been younger than before,which has become a major public health problem.Myopia is considered as a complex disease caused by genetic and environmental factors and gene-environment interaction.The exact etiology and pathogenesis of myopia has not been elucidated,although a lot of experimental researches have explored it.Epigenetics,as a hotspot in biomedical research,has deepened our understanding,and this present article will give a review on the recent progress of the epigenetics of myopia.

参考文献/References:

[1] HOLDEN B A,FRICKE T R,WILSON D A,JONG M,NAIDOO K S,SANKARIDURG P,et al.Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J].Ophthalmology,2016,123(5):1036-1042.
[2] WILLIAMS K M,BERTELSEN G,CUMBERLAND P,WOLFRAM C,VERHOEVEN V J,ANASTASOPOULOS E,et al.Increasing prevalence of myopia in Europe and the impact of education[J].Ophthalmology,2015,122(7):1489-1497.
[3] ZHOU W J,ZHANG Y Y,LI H,WU Y F,XU J,LV S,et al.Five-Year progression of refractive errors and incidence of myopia in school-aged children in western China[J].J Epidemiol,2016,26(7):386-395.
[4] SANFILIPPO P G,HEWITT A W,HAMMOND C J,MACKEY D A.The heritability of ocular traits[J].Surv Ophthalmol 2010,55(6):561-583.
[5] KIM M H,ZHAO D,KIM W,LIM D,SONG Y,GUALLAR E,et al.Heritability of myopia and ocular biometrics in Koreans:The healthy twin study[J].Invest Ophthalmol Vis Sci,2013,54(5):3644-3649.
[6] WOJCIECHOWSKI R,CHENG C Y.Involvement of multiple molecular pathways in the genetics of ocular refraction and myopia[J].Retina,2018,38(1):91-101.
[7] LIAO X,LAN C J,LIAO D,TIAN J,HUANG X Q.Exploration and detection of potential regulatory variants in refractive error GWAS[J].Sci Rep,2016,6:33090.
[8] ROSE K A,FRENCH A N,MORGAN I G.Environmental factors and myopia:paradoxes and prospects for prevention[J].Asia Pac J Ophthalmol (Phila),2016,5(6):403-410.
[9] FAN Q,VERHOEVEN V J,WOJCIECHOWSKI R,BARATHI V A,HYSI PG,GUGGENHEIM J A,et al.Meta-analysis of gene-environment-wide association scans accounting for education level identifies additional loci for refractive error[J].Nat Commun,2016,7:11008.
[10] GOLDSCHMIDT E,JACOBSEN N.Genetic and environmental effects on myopia development and progression[J].Eye (Lond),2014,28(2):126-133.
[11] CHOUDHURI S.From Waddington’s epigenetic landscape to small noncoding RNA:some important milestonesin the history of epigenetics research[J].Toxico Mech Methods,2011,21(4):252-274
[12] RAVICHANDRAN M,JURKOWSKA R Z,JURKOWSKI T P.Target specificity of mammalian DNA methylation and demethylation machinery[J].Org Biomol Chem,2018,16(9):1419-1435.
[13] METLAPALLY R,WILDSOET C F.Scleral mechanisms underlying ocular growth and myopia[J].Prog Mol Biol Transl Sci,2015,134:241-248.
[14] MCBRIEN N A,CORNELL L M,GENTLE A.Structural and ultrastructural changes to the sclera in a mammalian model of high myopia[J].Invest Ophthalmol Vis Sci,2001,42:2179-2187.
[15] NAKANISHI H,YAMADA R,GOTOH N,HAYASHI H,OTANI A,TSUJIKAWA A,et al.Absence of association between COL1A1 polymorphisms and high myopia in the Japanese population[J].Invest Ophthalmol Vis Sci,2009,50(2):544-550.
[16] YANG Z,KE Z F,ZENG C,WANG Z,SHI H J,WANG H L.Mutation characteristics in type I collagen genes in Chinese patients with osteogenesis imperfecta[J].Genet Mol Res,2011,10(1):177-185.
[17] GENTLE A,LIU Y,MARTIN J E,CONTI G L,MCBRIEN N A.Collagen gene expression and the altered accumulation of scleral collagen during the development of high myopia[J].J Biol Chem,2003,278:16587-16594.
[18] SIEGWART JT JR,NORTON T T.Steady state mRNA levels in tree shrew sclera with form-deprivation myopia and during recovery[J].Invest Ophthalmol Vis Sci,2001,42:1153-1159.
[19] SIEGWART JR J T,NORTON T T.The time course of changes in mRNA levels in tree shrew sclera during induced myopia and recovery[J].Invest Ophthalmol Vis Sci,2002,43:2067-2075.
[20] ZHOU X,JI F,AN J,ZHAO F,SHI F,HUANG F,et al.Experimental murine myopia induces collagen type I α1 (COL1A1) DNA methylation and altered COL1A1 messenger RNA expression in sclera[J].Mol Vis,2012,18:1312-1324.
[21] JUNG H J,SUH Y.Circulating miRNAs in ageing and ageing-related diseases[J].J Genet Genomics,2014,41(9):465-472.
[22] FABBRI M.MicroRNAs and miRceptors:a new mechanism of action for intercellular communication[J].Philos Trans R Soc Lond B Biol Sci,2018,373(1737):20160486.
[23] TKATCHENKO A V,LUO X,TKATCHENKO T V,VAZ C,TANAVDE V M,MAURER-STROH S,et al.Large-scale microRNA expression profiling identifies putative retinal miRNA-mRNA signaling pathways underlying form-deprivation myopia in mice[J].PLoS One,2016,11(9):e0162541.
[24] LUO X Y,TKATCHENKO T,TKATCHENKO A,METLAPALLY R,GONZALEZ P,YOUNG T.Evaluation of MicroRNA expression profiles for form-deprivation myopia in mouse[J].Invest Ophthalmol Vis Sci,2013,54(15):3673.
[25] METLAPALLY R,PARK H N,CHAKRABORTY R,WANG K K,TAN C C,LIGHT J G,et al.Genome-wide scleral Micro- and Messenger-RNA regulation during myopia development in the mouse[J].Invest Ophthalmol Vis Sci,2016,57(14):6089-6097
[26] TSONIS P A.FUENTES E J.Focus on molecules:Pax-6,the eye master[J].Exp Eye Res,2006,83(2):233-234
[27] LIANG C L,HSI E,CHEN K C,PAN Y R,WANG Y S,JUO S H.A functional polymorphism at 3’UTR of the PAX6 gene may confer risk for extreme myopia in the Chinese[J].Invest Ophthalmol Vis Sci,2011,52(6):3500-3505.
[28] CHEN K C,HSI E,HU C Y,CHOU W W,LIANG C L,JUO S H.MicroRNA-328 may influence myopia development by mediating the PAX6 gene[J].Invest Ophthalmol Vis Sci,2012,53(6):2732-2739.
[29] TAN J,TONG B D,WU Y J,XIONG W.MicroRNA-29 mediates TGFβ1-induced extracellular matrix synthesis by targeting wnt/β-catenin pathway in human orbital fibroblasts[J].Int J Clin Exp Pathol,2014,7(11):7571-7577.
[30] PEREZ-CADAHLA B,DROBIC B,KHAN P,SHIVASHANKAR C C,DAVIE J R.Current understanding and importance of histone phosphorylation in regulating chromatinbiology[J].Curr Opin Drug Discov Devel,2010,13(5):613-622.
[31] STRAHL B D,ALLIS C D.The language of covalent histone modifications[J].Nature,2000,403(6765):41-45.
[32] LIAO X,YAP M K H,LEUNG K H,KAO P Y P,LIU L Q,YIP S P.Genetic association study of KCNQ5 polymorphisms with high myopia[J].Biomed Res Int,2017,2017(3):1-7.
[33] RAO R C,TCHEDRE K T,MALIK M T,COLEMAN N,FANG Y,MARQUEZ V E,et al.Dynamic patterns of histone lysine methylation in the developing retina[J].Invest Ophthalmol Vis Sci,2010,51(12):6784-6792.
[34] WATANABE S,MURAKAMI A.Regulation of retinal development via the epigenetic modification of histone H3[J].Adv Exp Med Biol,2016,854:635-641.
[35] PARK H L,KIM J H,JUNF Y,PARK C K.Racial differences in the extrace-llular matrix and histone acetylation of the Lamina Cribrosa and peri-papillary sclera[J].Invest Ophthalmol Vis Sci,2017,58(10):4143-4154.

相似文献/References:

[1]计垣.近视的分子遗传学研究进展[J].眼科新进展,2012,32(6):000.
[2]张卫霞 曾照年 唐秀侠 孙宏霞 李洪润.Zywave波前像差仪在近视屈光不正测量中的应用[J].眼科新进展,2012,32(7):000.
[3]闵红波 刘小红 花雷 韩文龙 储明慧 邵娟英.近视对OCT测量视网膜神经纤维层厚度的影响[J].眼科新进展,2012,32(12):000.
[4]刘太祥 李海祥 石容 王铮.ORK程序中两种切削模式治疗近视术后角膜像差变化及对视觉功能的影响[J].眼科新进展,2013,33(1):000.
[5]陈月芹 黄振平 薛春燕 葛轶睿.有晶状体眼虹膜固定型人工晶状体植入术后房角宽度的改变[J].眼科新进展,2013,33(6):000.
[6]王凌飞 杨瑞波 赵少贞.CACHET有晶状体眼人工晶状体植入术后视觉质量的临床评价[J].眼科新进展,2013,33(6):000.
[7]胡裕坤 李文静 高晓唯 董晶 郭云林.飞秒激光微小切口角膜基质透镜切除术治疗近视对角膜波前像差的影响[J].眼科新进展,2013,33(7):000.
[8]许瑶 曾骏文.近视眼药物治疗研究进展[J].眼科新进展,2013,33(7):000.
[9]汤勇 刘才远.LASIK、Epi-LASIK、SBK、Fem-LASIK及SMILE术中角膜切削误差的对比研究[J].眼科新进展,2013,33(9):000.
[10]吴玉伟 李筱荣 张琰 赵雅丽 王晓燕.无酒精LASEK治疗近视和近视散光的临床疗效[J].眼科新进展,2013,33(9):000.

备注/Memo

备注/Memo:
四川省卫计委科研项目(编号:17PJ529);南充市市校科技战略合作项目(编号:NSMC20170450);川北医学院博士科研基金项目(编号:CBY14-QD-05);四川省教育厅自然科学重点项目(编号:14ZA0183)
更新日期/Last Update: 2018-09-28