[1]管丽红,林俊堂.CRISPR-Cas9基因编辑技术在眼科疾病中的应用[J].眼科新进展,2018,38(9):801-803.[doi:10.13389/j.cnki.rao.2018.0190]
 GUAN Li-Hong,LIN Jun-Tang.Application of CRISPR-Cas9 technology in ophthalmological diseases[J].Recent Advances in Ophthalmology,2018,38(9):801-803.[doi:10.13389/j.cnki.rao.2018.0190]
点击复制

CRISPR-Cas9基因编辑技术在眼科疾病中的应用/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
38卷
期数:
2018年9期
页码:
801-803
栏目:
述评
出版日期:
2018-09-05

文章信息/Info

Title:
Application of CRISPR-Cas9 technology in ophthalmological diseases
作者:
管丽红林俊堂
453003 河南省新乡市,新乡医学院生命科学技术学院干细胞中心,河南省医用组织再生重点实验室(管丽红,林俊堂);453003 河南省新乡市,新乡医学院生物医学工程学院(林俊堂)
Author(s):
GUAN Li-HongLIN Jun-Tang
Stem Cell Center,College of Life Science and Technology,Xinxiang Medical University,Henan Key Laboratory of Medical Tissue Regeneration(GUAN Li-Hong,LIN Jun-Tang),Xinxiang 453003,Henan Province,China;College of Biomedical Engineering,Xinxiang Medical University(LIN Jun-Tang),Xinxiang 453003,Henan Province,China
关键词:
CRISPR-Cas9基因组编辑基因治疗眼科疾病
Keywords:
CRISPR-Cas9genome editinggene therapyophthalmological diseases
分类号:
Q789
DOI:
10.13389/j.cnki.rao.2018.0190
文献标志码:
A
摘要:
规律成簇间隔短回文重复(clustered regularly interspaced short palindromic repeat,CRISPR)及相关核酸内切酶9(CRISPR associated protein,Cas9)技术是一种由RNA指导核酸内切酶的基因编辑技术。该技术以其操作简便、基因敲除效率高、靶向精准、周期短等特点迅速被用于多个物种的基因组编辑及疾病基因治疗中。本文旨在对CRISPR-Cas9技术在构建眼科疾病模型和治疗眼科疾病中的应用进展进行综述。
Abstract:
The clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR associated protein 9 (Cas9) is a gene editing technology directed by RNA endonuclease.This technology is rapidly used in genome editing and gene therapy for many species because of its simple operation,high gene knockout efficiency,precise target and short cycle.The purpose of this paper is to review the application and progress of CRISPR-Cas9 technology in the construction of ophthalmological disease models and the treatment of ophthalmological diseases.

参考文献/References:

[1] ISHINO Y,SHINAGAWA H,MAKINO K,AMEMURA M,NAKATA A.Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J].J Bacteriol,1987,169(12):5429-5433.
[2] JANSEN R,EMBDEN J D,GAASTRA W,SCHOULS L M.Identification of genes that are associated with DNA repeats in prokaryotes[J].Mol Microbiol,2002,43(6):1565-1575.
[3] BOLOTIN A,QUINQUIS B,SOROKIN A,EHRLICH S D.Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin[J].Microbiology,2005,151(Pt 8):2551-2561.
[4] MOJICA F J,DIEZ-VILLASENOR C,GARCIA-MARTINEZ J,SORIA E.Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J].J Mol Evol,2005,60(2):174-182.
[5] POURCEL C,SALVIGNOL G,VERGNAUD G.CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA,and provide additional tools for evolutionary studies[J].Microbiology,2005,151(Pt 3):653-663.
[6] BARRANGOU R,FREMAUX C,DEVEAU H,RICHARDS M,BOYAVAL P,MOINEAU S.CRISPR provides acquired resistance against viruses in prokaryotes[J].Science,2007,315(5819):1709-1712.
[7] MAKAROVA K S,WOLF Y I,ALKHNBASHI O S,COSTA F,SHAH S A,SAUNDERS S J,et al.An updated evolutionary classification of CRISPR-Cas systems[J].Nat Rev Microbiol,2015,13(11):722-736.
[8] WILKINSON R,WIEDENHEFT B.A CRISPR method for genome engineering[J].F1000Prime Reports,2014,6:3.
[9] PLATT R J,CHEN S,ZHOU Y,YIM M J,SWIECH L,KEMPTON H R,et al.CRISPR-Cas9 knockin mice for genome editing and cancer modeling[J].Cell,2014,159(2):440-455.
[10] MIZUNO S,DINH T T,KATO K,MIZUNO-IIJIMA S,TANIMOTO Y,DAITOKU Y,et al.Simple generation of albino C57BL/6J mice with G291T mutation in the tyrosinase gene by the CRISPR/Cas9 system[J].Mamm Genome,2014,25(7-8):327-334.
[11] HAREL I,BENAYOUN B A,MACHADO B,SINGH P P,HU C K,PECH M F,et al.A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate[J].Cell,2015,160(5):1013-1026.
[12] BENAVENTE C A,DYER M A.Genetics and epigenetics of human retinoblastoma[J].Annu Rev Pathol,2015,10:547-562.
[13] NAERT T,COLPAERT R,VAN NIEUWENHUYSEN T,DIMITRAKOPOULOU D,LEOEN J,HAUSTRAETE J,et al.CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis[J].Sci Rep,2016,6:35264.
[14] REDDY M A,FRANCIS P J,BERRY V,BHATTACHARYA S S,MOORE A T.Molecular genetic basis of inherited cataract and associated phenotypes[J].Surv Ophthalmol,2004,49(3):300-315.
[15] GONG X,CHENG C,XIA C H.Connexins in lens development and cataractogenesis[J].J Membr Biol,2007,218(1-3):9-12.
[16] YUAN L,SUI T,CHEN M,DENG J,HUANG Y,ZENG J,et al.CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts[J].Sci Rep,2016,6:22024.
[17] LITT M,KRAMER P,LAMORTICELLA D M,MURPHEY W,LOVRIEN E W,WELEBER R G.Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA[J].Hum Mol Genet,1998,7(3):471-474.
[18] JIAO X,KHAN S Y,IRUM B,KHAN A O,WANG Q,KABIR F,et al.Missense mutations in CRYAB are liable for recessive congenital cataracts[J].PLoS One,2015,10(9):e0137973.
[19] YUAN L,YAO H,XU Y,CHEN M,DENG J,SONG Y,et al.CRISPR/Cas9-mediated mutation of alphaA-crystallin gene induces congenital cataracts in rabbits[J].Invest Ophthalmol Vis Sci,2017,58(6):BIO34-BIO41.
[20] LONG C Z,MCANALLY J R,SHELTON J M,MIREAULT A A,BASSEL-DUBY R,OLSON E N.Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA[J].Science,2014,345(6201):1184-1188.
[21] GUAN Y,MA Y,LI Q,SUN Z,MA L,WU L,et al.CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse[J].EMBO Mol Med,2016,8(5):477-488.
[22] YIN H,XUE W,CHEN S,BOGORAD R L,BENEDETTI E,GROMPE M,et al.Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype[J].Nat Biotechnol,2014,32(6):551-553.
[23] YANG S,CHANG R,YANG H,ZHAO T,HONG Y,KONG H E,et al.CRISPR/Cas9-mediated gene editing ameliorates neurotoxicity in mouse model of Huntington’s disease[J].J Clin Invest,2017,127(7):2719-2724.
[24] HAMEL C.Retinitis pigmentosa[J].Orphanet J Rare Dis,2006,1:40.
[25] WU W H,TSAI Y T,JUSTUS S,LEE T T,ZHANG L,LIN C S,et al.CRISPR repair reveals causative mutation in a preclinical model of retinitis pigmentosa[J].Mol Ther,2016,24(8):1388-1394.
[26] SUNG C H,CHUANG J Z.The cell biology of vision[J].J Cell Biol,2010,190(6):953-963.
[27] BAKONDI B,LV W,LU B,JONES M K,TSAI Y,KIM K J,et al.In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the s334ter-3 rat model of autosomal dominant retinitis pigmentosa[J].Mol Ther,2016,24(3):556-563.
[28] GIANNELLI SG,LUONI M,CASTOLDI V,MASSIMINO L,CABASSI T,ANGELONI D,et al.Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery[J].Hum Mol Genet,2018,27(5):761-779.
[29] BASSUK A G,ZHENG A,LI Y,TSANG S H,MAHAJAN V B.Precision medicine:genetic repair of retinitis pigmentosa in patient-derived stem cells[J].Sci Rep,2016,6:19969.
[30] DEN HOLLANDER A I,KOENEKOOP R K,YZER S,LOPEZ I,ARENDS M L,VOESENEK K E,et al.Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis[J].Am J Hum Genet,2006,79(3):556-561.
[31] RUAN G X,BARRY E,YU D,LUKASON M,CHENG S H,SCARIA A.CRISPR/Cas9-Mediated genome editing as a therapeutic approach for leber congenital amaurosis 10[J].Mol Ther,2017,25(2):331-341.
[32] WIGGS J L,PASQUALE L R.Genetics of glaucoma[J].Hum Mol Genet,2017,26(R1):R21-R27.
[33] JAIN A,ZODE G,KASETTI RB,RAN F A,YAN W,SHARMA T P,et al.CRISPR-Cas9-based treatment of myocilin-associated glaucoma[J].Proc Natl Acad Sci USA,2017,114(42):11199-11204.
[34] ZHAO L,LI K,BAO S,ZHOU Y,LIANG Y,ZHAO G,et al.A 1-bp deletion in the gammaC-crystallin leads to dominant cataracts in mice[J].Mamm Genome,2010,21(7-8):361-369.
[35] WU Y,LIANG D,WANG Y,BAI M,TANG W,BAO S,et al.Correction of a genetic disease in mouse via use of CRISPR-Cas9[J].Cell Stem Cell,2013,13(6):659-662.
[36] JAMAL M,ULLAH A,AHSAN M,TYAGI R,HABIB Z,REHMAN K.Improving CRISPR-Cas9 On-Target Specificity[J].Curr Issues Mol Biol,2018,26:65-80.

备注/Memo

备注/Memo:
国家自然科学基金(编号:81771226、81600987);河南省高等学校重点科研项目(编号:14A180010、16A180013);新乡市重大科技专项和新乡市创新人才支持计划(编号:ZD17008、CXRC6003);新乡医学院博士科研启动资助项目和新乡医学院自然科学类重大科技成果培育计划(编号:XYBSKYZZ201523、505091、20172DCG-03);河南省医用组织再生重点实验室开放课题(编号:KFKT15004)
更新日期/Last Update: 2018-08-31