[1]彭广华,王少军,杜璐.CRISPR/Cas9系统在视网膜发育与遗传性视网膜疾病研究中的应用[J].眼科新进展,2017,37(10):901-905.[doi:10.13389/j.cnki.rao.2017.0229]
 PENG Guang-Hua,WANG Shao-Jun,DU Lu.Application of CRISPR/Cas 9 system for the research of retinal development and inherited retinal diseases[J].Recent Advances in Ophthalmology,2017,37(10):901-905.[doi:10.13389/j.cnki.rao.2017.0229]
点击复制

CRISPR/Cas9系统在视网膜发育与遗传性视网膜疾病研究中的应用/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
37卷
期数:
2017年10期
页码:
901-905
栏目:
述评
出版日期:
2017-10-05

文章信息/Info

Title:
Application of CRISPR/Cas 9 system for the research of retinal development and inherited retinal diseases
作者:
彭广华王少军杜璐
100853 北京市,中国人民解放军总医院眼科
Author(s):
PENG Guang-HuaWANG Shao-JunDU Lu
Department of Ophthalmology,Chinese People’s Liberation Army General Hospital,Beijing 100853,China
关键词:
CRISPR/Cas9 技术基因编辑遗传性视网膜疾病发育基因治疗
Keywords:
CRISPR/Cas9gene editinggenetic retinal diseasedevelopmentgene therapy
分类号:
R774
DOI:
10.13389/j.cnki.rao.2017.0229
文献标志码:
A
摘要:
CRISPR/Cas9 系统作为第三代基因编辑工具的代表,操作简便、效率高、成本低,应用前景极其广阔。该系统能够对基因组中特定的核苷酸序列切割,尤其可用于纠正机体的异常基因突变。利用该系统不仅可阐述视网膜发育过程关键基因的调控功能,以及视网膜变性过程中相关信号通路改变的分子机制,更为重要的是运用该系统可修复异常的基因突变。本文主要论述CRISPR/Cas9 系统在人类视网膜发育及遗传性视网膜变性疾病发病机制研究中的应用,以及在视网膜变性疾病患者个体化基因治疗方面的应用前景。
Abstract:
The system of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease (Cas) 9 is an effective tool for revising the genome with great accuracy,and boost the advances in life science.By employing this system,we discover the regulation role of key gene during retina development and correct the abnormal mutation of these genes.In this paper,we summarize CRISPR-based technologies that enable mammalian genome editing and their various applications.And CRISPR/Cas9 may be a promising tool to disclosure the mechanism of retinal diseases so as to develop novel treatment for patients with retinitis pigmentosa.

参考文献/References:

[1] VELERI S,LAZAR CH,CHANG B,SIEVING PA,BANIN E,SWAROOP A.Biology and therapy of inherited retinal degenerative disease:insights from mouse models[J].Dis Model Mech,2015,8(2):109-129.
[2] RATNAPRIYA R,SWAROOP A.Genetic architecture of retinal and macular degenerative diseases:the promise and challenges of next-generation sequencing[J].Genome Med,2013,5(10):84.
[3] CONG L,RAN FA,COX D,LIN S,BARRETTO R,HABIB N,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823.
[4] JINEK M,CHYLINSKI K,FONFARA I,HAUER M,DOUDNA JA,CHARPENTIER E.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(696):816-821.
[5] MALI P,YANG LH,ESVELT KM,AACH JA,DICARLO JE,NORVILLE JE,et al.RNA-guided human genome engineering via Cas9[J].Science,2013,339(6121):823-826.
[6] DING QR,REGAN SN,XIA YL,OOSTROM LA,COWAN CA,MUSUNURU K.Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs[J].Cell Stem Cell,2013,12(4):393-394.
[7] LI W,TENG F,LI T,ZHOU Q.Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems[J].Nat Biotechnol,2013,31(8):684-686.
[8] WANG HY,YANG H,SHIVALILA CS,DAWLATY MM,CHENG AW,ZHANG F,et al.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J].Cell,2013,153(4):910-918.
[9] YANG H,WANG HY,SHIVALILA CS,CHENG AW,SHI LY,JAENISCH R.One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering[J].Cell,2013,154(6):1370-1379.
[10] HSU PD,SCOTT DA,WEINSTEIN JA,RAN FA,KONERMANN S,AGARWALA V,et al.DNA targeting specificity of RNA-guided Cas9 nucleases[J].Nat Biotechnol,2013,31(9):827-832.
[11] HOLT R,BROWN L,BROADGATE S,BUTLER R,JAGANNATH A,DOWNES S,et al.Identification of rod- and cone-specific expression signatures to identify candidate genes for retinal disease[J].Exp Eye Res,2015,132:161-173.
[12] ZAGOZEWSKI JL,ZHANG Q,PINTO VI,WIGLE JT,EISENSTAT DD.The role of homeobox genes in retinal development and disease[J].Dev Biol,2014,393(2):195-208.
[13] KARUNAKARAN DK,AL SEESI S,BANDAY AR,BAUMGARTNER M,OLTHOF A,LEMOINE C,et al.Network-based bioinformatics analysis of spatio-temporal RNA-Seq data reveals transcriptional programs underpinning normal and aberrant retinal development[J].BMC Genomics,2016,17(5):2016-2822.
[14] CHENG AW,WANG HY,YANG H,SHI LY,KATZ Y,THEUNISSEN TW,et al.Multiplexed activation of endogenous genes by CRISPR-on,an RNA-guided transcriptional activator system[J].Cell Res,2013,23(10):1163-1171.
[15] ZALATAN JG,LEE ME,ALMEIDA R,GILBERT LA,WHITEHEAD EH,LA RUSSA M,et al.Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J].Cell,2015,160(1/2):339-350.
[16] PETERS JM,COLAVIN A,SHI H,CZARNY TL,LARSON MH,WONG S,et al.A comprehensive,CRISPR-based functional analysis of essential genes in bacteria[J].Cell,2016,165(6):1493-1506.
[17]  KONERMANN S,BRIGHAM MD,TREVINO AE,JOUNG J,ABUDAYYEH OO,BARCENA C,et al.Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex[J].Nature,2015,517(7536):583-588.
[18] FULCO CP,MUNSCHAUER M,ANYOHA RA,GROSSMAN SR,PEREZ EM,KANE M,et al.Systematic mapping of functional enhancer-promoter connections with CRISPR interference[J].Science,2016,354(6313):769-773.
[19] HILTON IB,D’IPPOLITO AM,VOCKLEY CM,THAKORE PI,CRAWFORD GE,REDDY TE,et al.Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers[J].Nat Biotechnol,2015,33(5):510-517.
[20] KEARNS NA,PHAM H,TABAK B,GENGA RM,SILVERSTEIN NJ,GARBER M,et al.Functional annotation of native enhancers with a Cas9-histone demethylase fusion[J].Nat Methods,2015,12(5):401-403.
[21]  CHEN BH,GILBERT LA,CIMINI BA,SCHNITZBAUER J,ZHANG W,LI GW,et al.Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system[J].Cell,2013,155(7):1479-1491.
[22]  RAMACHANDRAN R,FAUSETT BV,GOLDMAN D.Asclla regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent,let-7 microRNA signalling pathway[J].Nat Cell Biol,2010,12(11):1101-1107.
[23] YIN LL,MADDISON LA,LI MY,KARA NA,VARSHNEY GK,BURGESS SM,et al.Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs[J].Genetics,2015,200(2):431-441.
[24] JORSTAD NL,WILKEN MS,RIMES WN,VANDENBOSCH LS,YOSHIMATSU TA,RIEKE F,et al.Stimulation of functional neuronal regeneration from Müller glia in adult mice[J].Nature,2017,548(7665):103-107.
[25] KATOH K,OMORI Y,ONISHI A,SATO S,KONDO M,FURUKAWA T.Blimp1 suppresses Chx10 expression in differentiating retinal photoreceptor precursors to ensure proper photoreceptor development[J].J Neurosci,2010,30(19):6515-6526.
[26] WANG S,SENGEL C,EMERSON MM,CEPKO CL.A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina[J].Dev Cell,2014,30(5):513-527.
[27] ZHOU XQ,XIN JG,FAN NA,ZOU QJ,HUANG J,OUYANG Z,et al.Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer[J].Cell Mol Life Sci,2015,72(6):1175-1184.
[28] WANG XL,ZHOU JW,CAO CW,HUANG JA,WANG YF,ZHENG QT,et al.Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs[J].Sci Rep,2015,5:13348.
[29] KAEWKHAW R,KAYA KD,BROOKS M,HOMMA K,ZOU JZ,CHAITANKAR V,et al.Transcriptome dynamics of developing photoreceptors in Three-Dimensional retina cultures recapitulates temporal sequence of human cone and rod differentiation revealing cell surface markers and gene networks[J].Stem Cells,2015,33(12):3504-3518.
[30] FINDLAY GM,BOYLE EA,HAUSE RJ,KLEIN JC,SHENDURE J.Saturation editing of genomic regions by multiplex homology-directed repair[J].Nature,2014,513(7516):120-123.
[31] SHALEM O,SANJANA NE,HARTENIAN E,SHI X,SCOTT DA,MIKKELSEN TS,et al.Genome-scale CRISPR-Cas9 knockout screening in human cells[J].Science,2014,343(6166):84-87.
[32] WANG T,WEI JJ,SABATINI DM,LANDER ES.Genetic screens in human cells using the CRISPR-Cas9 system[J].Science,2014,343(6166):80-84.
[33] ZHOU YE,ZHU SY,CAI CZ,YUAN PF,LI CM,HUANG YY,et al.High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells[J].Nature,2014,509(751):487-491.
[34] GILBERT LA,HORLBECK MA,ADAMSON B,VILLALTA JE,CHEN YW,WHITEHEAD EH,et al.Genome-scale CRISPR-mediated control of gene repression and activation[J].Cell,2014,159(3):647-661.
[35] WANG T,BIRSOY K,HUGHES NW,KRUPCZAK KM,POST Y,WEI JJ,et al.Identification and characterization of essential genes in the human genome[J].Science,2015,350(6264):1096-1101.
[36] DUONG TT,VASIREDDY V,MILLS JA.Retinas in a dish peek into inherited retinal degeneration[J].Cell Stem Cell,2016,18(6):688-689.
[37] MCKENNA A,FINDLAY GM,GAGNON JA,HORWITZ MS,SCHIER AF,SHENDURE J.Whole-organism lineage tracing by combinatorial and cumulative genome editing[J].Science,2016,353(6298):aaf7909.
[38]  FRIEDA KL,LINTON JM,HORMOZ S,CHOI J,CHOW K,SINGER ZS,et al.Synthetic recording and in situ readout of lineage information in single cells[J].Nature,2017,541(7635):107-111.
[39] GONZALEZ F,ZHU Z,SHI ZD,LELLI K,VERMA N,LI QV,et al.An iCRISPR platform for rapid,multiplexable,and inducible genome editing in human pluripotent stem cells[J].Cell Stem Cell,2014,15(2):215-226.
[40] YIN H,XUE W,CHEN SD,BOGORAD RL,GROMPE M,KOTELIANSKY V,et al.Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype[J].Nat Biotechnol,2014,32(6):551-553.
[41] KOMOR AC,KIM YB,PACKER MS,ZURIS JA,LIU DR.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J].Nature,2016,533(763):420-424.
[42] WU YX,LIANG D,WANG YH,BAI MZ,TANG W,BAO SM,et al.Correction of a genetic disease in mouse via use of CRISPR-Cas9[J].Cell Stem Cell,2013,13(6):659-662.
[43] PAQUET D,KWART D,CHEN A,SPROUL A,JACOB S,TEO S,et al.Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9[J].Nature,2016,533(761):125-129.
[44] YANG LH,GUEELL M,NIU D,GEORGE H,LESHA E,GRISHIN D,et al.Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J].Science,2015,350(6264):1101-1104.
[45] LONG C,AMOASII L,MIREAULT AA,MCANALLY JR,LI H,SANCHEZ-ORTIZ E,et al.Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy[J].Science,2016,351(6271):400-403.
[46] SUZUKI K,TSUNEKAWA Y,HERNANDEZ-BENITEZ R,WU J,ZHU J,KIM EJ,et al.In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration[J].Nature,2016,540(7631):144-149.
[47] YU W,MOOKHERJEE S,CHAITANKAR V,HIRIYANNA S,KIM JW,BROOKS M,et al.Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice[J].Nat Commun,2017,8:14716.
[48] ZHU J,MING C,FU X,DUAN Y,HOANG DA,RUTGARD J,et al.Gene and mutation independent therapy via CRISPR-Cas9 mediated cellular reprogramming in rod photoreceptors[J].Cell Res,2017,27(6):830-833.
[49] BAKONDI B,LV W,LU B,JONES MK,TSAI Y,KIM KJ,et al.In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa[J].Mol Ther,2016,24(3):556-563.
[50] RUAN GX,BARRY E,YU D,LUKASON M,CHENG SH,SCARIA A.CRISPR/Cas9-mediated genome editing as a therapeutic approach for leber congenital amaurosis 10[J].Mol Ther,2017,25(2):331-341.
[51] YIU G,TIEU E,NGUYEN AT,WONG BA.Genomic disruption of VEGF-A expression in human retinal pigment epithelial cells using CRISPR-Cas9 endonuclease[J].Invest Ophthalmol Vis Sci,2016,57(13):5490-5497.
[52] HUANG XG,ZHOU GH,WU WY,MA GA,MUKAI S,LEI HT.Editing VEGFR2 blocks VEGF-induced activation of Akt and tube formation[J].Invest Ophthalmol Vis Sci,2017,58(2):1228-1236.
[53] KIM E,KOO T,PARK SW,KIM DA,CHO HY,SONG DW,et al.In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni[J].Nat Commun,2017,8:14500.
[54] NISHIMASU H,RAN FA,HSU PD,KONERMANN S,SHEHATA SI,DOHMAE N,et al.Crystal structure of Cas9 in complex with guide RNA and target DNA[J].Cell,2014,156(5):935-949.
[55] ZURIS JA,THOMPSON DB,SHU Y,GUILINGER JP,BESSEN JL,HU JH,et al.Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo[J].Nat Biotechnol,2015,33(1):73-80.
[56] KORMANN MS,HASENPUSCH G,ANEJA MK,FLEMMER AW,HERBER-JONAT SA,MAYS LE,et al.Expression of therapeutic proteins after delivery of chemically modified mRNA in mice[J].Nat Biotechnol,2011,29(2):154-157.
[57] RAMALINGAM S,ANNALURU N,CHANDRASEGARAN S.A CRISPR way to engineer the human genome[J].Genome Biol,2013,14(2):107.
[58] KLEINSTIVER BP,PREW MS,TSAI SQ,NGUYEN NT,ZHENG ZL,GONZALES AP,et al.Engineered CRISPR-Cas9 nucleases with altered PAM specificities[J].Nature,2015,523(7561):481-485.
[59] RAN FA,HSU PD,LIN CY,GOOTENBERG JS,KONERMANN S,TREVINO AE,et al.Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J].Cell,2013,154(6):1380-1389.
[60] FU YF,SANDER JD,REYON D,CASCIO VM,JOUNG JK.Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J].Nat Biotechnol,2014,32(3):279-284.
[61] TSAI SQ,WYVEKENS N,KHAYTER C,FODEN JA,THAPAR V,REYON D,et al.Dimeric CRISPR RNA-guided Fokl nucleases for highly specific genome editing[J].Nat Biotechnol,2014,32(6):569-576.
[62] KALEBIC N,TAVERNA E,TAVANO S,WONG FK,SUCHOLD D,WINKLER S,et al.CRISPR/Cas9-induced disruption of gene expression in mouse embryonic brain and single neural stem cells in vivo[J].EMBO Rep,2016,17(3):338-348.
[63] HASHIMOTO M,YAMASHITA Y,TAKEMOTO T.Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse[J].Dev Biol,2016,418(1):1-9.
[64] SAMPSON TR,SAROJ SD,LLEWELLYN AC,TZENG YL,WEISS DS.A CRISPR/Cas system mediates bacterial innate immune evasion and virulence[J].Nature,2013,497(7448):254-257.
[65] CYRANOSKI D.CRISPR gene-editing tested in a person for the first time[J].Nature,2016,539(7630):479.

相似文献/References:

[1]李润璞,金鑫.基因组编辑技术在遗传性视网膜营养不良基因治疗和细胞治疗中的应用[J].眼科新进展,2020,40(3):290.[doi:10.13389/j.cnki.rao.2020.0068]
 LI Runpu,JIN Xin.Application of genomic editing technology in gene therapy and cell therapy of inherited retinal dystrophies[J].Recent Advances in Ophthalmology,2020,40(10):290.[doi:10.13389/j.cnki.rao.2020.0068]
[2]李雨雨,李如意,李根林.视网膜色素变性行精准医疗的机制及方法进展[J].眼科新进展,2021,41(4):397.[doi:10.13389/j.cnki.rao.2021.0083]
 LI Yuyu,LI Ruyi,LI Genlin.The mechanism and methods of precision medicine for retinitis pigmentosa[J].Recent Advances in Ophthalmology,2021,41(10):397.[doi:10.13389/j.cnki.rao.2021.0083]
[3]周紫依,游志鹏.基因编辑治疗视网膜疾病的研究进展[J].眼科新进展,2021,41(5):495.[doi:10.13389/j.cnki.rao.2021.0103]
 ZHOU Ziyi,YOU Zhipeng.Research progress of gene editing for retinal diseases[J].Recent Advances in Ophthalmology,2021,41(10):495.[doi:10.13389/j.cnki.rao.2021.0103]

备注/Memo

备注/Memo:
国家重点基础发展计划基金资助(编号:2013CB967001);国家自然科学基金资助(编号:81501090)
更新日期/Last Update: 2017-10-24