[1]黄深振,齐迪,裴晓婷,等.SR8278改善时差所致小鼠泪腺功能紊乱的转录组学分析[J].眼科新进展,2024,44(4):264-269.[doi:10.13389/j.cnki.rao.2024.0052]
 HUANG Shenzhen,QI Di,PEI Xiaoting,et al.Transcriptomic analysis of SR8278 improving lacrimal gland dysfunction induced by jet lag in mice[J].Recent Advances in Ophthalmology,2024,44(4):264-269.[doi:10.13389/j.cnki.rao.2024.0052]
点击复制

SR8278改善时差所致小鼠泪腺功能紊乱的转录组学分析/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
44卷
期数:
2024年4期
页码:
264-269
栏目:
实验研究
出版日期:
2024-04-05

文章信息/Info

Title:
Transcriptomic analysis of SR8278 improving lacrimal gland dysfunction induced by jet lag in mice
作者:
黄深振齐迪裴晓婷路顶立司宏丽黄杜鎏睿张文潇巴梦茹轩书婷李志杰
450003 河南省郑州市,郑州大学人民医院,河南省人民医院,河南大学人民医院,河南省立眼科医院,河南省眼科研究所
Author(s):
HUANG ShenzhenQI DiPEI XiaotingLU DingliSI HongliHUANG DuliuruiZHANG WenxiaoBA MengruXUAN ShutingLI Zhijie
Henan Eye Institute,Henan Eye Hospital,People’s Hospital of Henan University,Henan Provincial People’s Hospital,People’s Hospital of Zhengzhou University,Zhengzhou 450003,Henan Province,China
关键词:
时差SR8278泪腺功能紊乱小鼠
Keywords:
jet lag SR8278 lacrimal gland dysfunction mice
分类号:
R777.2
DOI:
10.13389/j.cnki.rao.2024.0052
文献标志码:
A
摘要:
目的 探讨核受体亚家族1 D组成员1(NR1D1)合成拮抗剂 SR8278 在改善时差诱导的小鼠眶外泪腺结构和功能损伤方面的作用及其机制。
方法 36只健康的8~10周龄野生型C57BL/6J小鼠在12 h光照/12 h黑暗循环的昼夜节律箱内适应2周后随机分为3组:正常组(12 h光照/12 h黑暗循环的昼夜节律箱饲养)、时差组(8 h前移的12 h光照/12 h黑暗循环的昼夜节律箱饲养)及时差+SR8278组(8 h前移的12 h光照/12 h黑暗循环的昼夜节律箱饲养,并给予25 mg·kg-1的SR8278干预),每组12只,共干预5 d。干预结束后,收集各组小鼠的活动度和核心体温,记录小鼠的泪液分泌量,并对泪腺组织进行称重和泪腺细胞大小测量。采用免疫组织化学方法对小鼠眶外泪腺进行组织学评估。提取泪腺RNA进行包含NR1D1的高通量RNA-Seq分析,并对获得的转录组数据进行KEGG和GO功能富集分析。
结果 与正常组相比,时差组小鼠白天活动度较高,夜间活动度较低,白天核心体温较高,夜间核心体温较低,差异均有统计学意义(均为P<0.05)。与时差组相比,时差+SR8278组小鼠白天活动度较低,夜间活动度较高,白天核心体温较低,夜间核心体温较高,差异均有统计学意义(均为P<0.05)。与正常组相比,时差组小鼠泪腺重量及泪液分泌量降低,泪腺细胞增大,差异均有统计学意义(均为P<0.05);与时差组相比,时差+SR8278组小鼠泪腺重量及泪液分泌量增加,泪腺细胞减小,差异均有统计学意义(均为P<0.05)。与正常组相比,时差组小鼠夜晚泪腺中NR1D1表达量较高;与时差组相比,时差+SR8278组小鼠夜晚泪腺中NR1D1表达量较低,差异均有统计学意义(均为P<0.05)。生物信息学分析显示,时差组和时差+SR8278组共有947个显著性差异基因,其中显著性上调基因43个,显著性下调基因904个,信号通路差异最大的为Notch 信号通路。
结论 SR8278通过靶向抑制NR1D1,有效增强了时差小鼠的泪液分泌功能,其过程可能是通过Notch信号通路完成的。
Abstract:
Objective To investigate the role and mechanism of SR8278, a synthetic antagonist of nuclear receptor subfamily 1 group D member 1 (NR1D1), in alleviating the structural and functional impairment of the extraorbital lacrimal glands induced by jet lag in mice.
Methods Totally 36 healthy wild C57BL/6J mice aged 8-10 weeks were randomly divided into 3 groups (normal group, jet-lag group, and jet-lag+SR8278 group) after adapting to a circadian rhythm chamber under the 12 h light/12 h dark (12 h/12 h LD) cycle for 2 weeks, with 12 mice in each group. Mice in the normal group were fed in a circadian rhythm chamber in a 12 h LD cycle, mice in the jet-lag group were fed in a 12 h/12 h LD cycle with an 8-hour advanced LD schedule, and mice in the jet lag+SR8278 group were fed in a 12 h/12 h LD cycle with an 8-hour advanced LD schedule and received 25 mg·kg-1 SR8278. At the end of 5 days of intervention, locomotor activity, core body temperature and tear secretion of mice in each group were collected, and the weight of lacrimal gland tissues and size of lacrimal gland cells were measured. Immunohistochemical methods were used for histological evaluation of the extraorbital lacrimal glands in mice. Lacrimal ribonucleic acid (RNA) was extracted for high-throughput RNA-sequencing analysis containing NR1D1, and the obtained transcriptomic data were used for KEGG and GO functional enrichment analysis.
Results Compared with the normal group, the jet-lag group had higher daytime activity, lower nighttime activity, higher daytime core body temperature, and lower nighttime core body temperature, with statistically significant differences (all P<0.05). Compared with the jet-lag group, the jet-lag+SR8278 group had lower daytime activity, higher nighttime activity, lower daytime core body temperature, and higher nighttime core body temperature, with statistically significant differences (all P<0.05). Compared with the normal group, the jet-lag group showed a decrease in lacrimal gland weight and tear secretion and an increase in size of lacrimal gland cells, with statistical significance (all P<0.05); compared with the jet-lag group, the jet-lag+SR8278 group had an increase in lacrimal gland weight and tear secretion and a decrease in size of lacrimal gland cells, with statistical significance (all P<0.05). Compared with the normal group, the jet-lag group showed a higher expression of NR1D1 in the lacrimal gland at night; compared with the jet-lag group, the jet-lag+SR8278 group showed a lower expression of NR1D1 in the lacrimal gland at night (both P<0.05). Bioinformatics analysis showed 947 significantly different genes in the jet-lag group and the jet-lag+SR8278 group, of which 43 are significantly upregulated genes, and 904 are significantly downregulated genes. The Notch signaling pathway has the most significant difference.
Conclusion SR8278 effectively enhances the tear secretion function of jet-lagged mice by targeting NR1D1 inhibition. This process may be completed through the Notch signaling pathway.

参考文献/References:

[1] CHEN Y D,ZHAO R F,ZHENG G,LING F M,LI J R,XU M Y,et al.The association between disruption of the circadian rhythm and aggravation of colitis in mice [J].Gastroenterol Rep (Oxf),2022,10:goac028.
[2] CHELLAPPA S L,VUJOVIC N,WILLIAMS J S,SCHEER F.Impact of circadian disruption on cardiovascular function and disease [J].Trends Endocrinol Metab,2019,30 (10):767-779.
[3] RUAN W,YUAN X,ELTZSCHIG H K.Circadian rhythm as a therapeutic target [J].Nat Rev Drug Discov,2021,20 (4):287-307.
[4] SHEN Q,WU J,NI Y,XIE X,YU C,XIAO Q,et al.Exposure to jet lag aggravates depression-like behaviors and age-related phenotypes in rats subject to chronic corticosterone [J].Acta Biochim Biophys Sin (Shanghai),2019,51 (8):834-844.
[5] STEELE T A,ST LOUIS E K,VIDENOVIC A,AUGER R R.Circadian rhythm sleep-wake disorders:a contemporary review of neurobiology,treatment,and dysregulation in neurodegenerative disease [J].Neurotherapeutics,2021,18 (1):53-74.
[6] NARASIMAMURTHY R,VIRSHUP D M.The phosphorylation switch that regulates ticking of the circadian clock [J].Mol Cell,2021,81 (6):1133-1146.
[7] ARCHER S N,MLLER-LEVET C S,LAING E E,DIJK D J.Mistimed sleep and waking activity in humans disrupts glucocorticoid signalling transcripts and SP1,but not plasma cortisol rhythms [J].Front Physiol,2022,13:946444.
[8] HUANG S Z ,JIAO X W,LU D L,PEI X T,QI D,LI Z J.Light cycle phase advance as a model for jet lag reprograms the circadian rhythms of murine extraorbital lacrimal glands [J].Ocul Surf,2021,20:95-114.
[9] KOJETIN D,WANG Y,KAMENECKA T M,BURRIS T P.Identification of SR8278,a synthetic antagonist of the nuclear heme receptor REV-ERB [J].ACS Chem Biol,2011,6 (2):131-134.
[10] YAMAGUCHI Y,SUZUKI T,MIZORO Y,KORI H,OKADA K,CHEN Y,et al.Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag [J].Science,2013,342 (6154):85-90.
[11] KIESSLING S,EICHELE G,OSTER H.Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag [J].J Clin Invest,2010,120 (7):2600-2609.
[12] LIU J M,SI H L,HUANG D LR,LU D L,ZOU S,QI D,et al.Mechanisms of extraorbital lacrimal gland aging in mice:an integrative analysis of the temporal transcriptome [J].Invest Ophthalmol Vis Sci,2023,64 (12):18.
[13] QI D,ZOU S,LU D L,PEI X T,HUANG S Z,HUANG D LR,et al.Long-term high fructose intake promotes lacrimal gland dysfunction by inducing gut dysbiosis in mice [J].Exp Eye Res,2023,234:109573.
[14] ZOU S,LIU J M,SI H L,HUANG D LR,QI D,PEI X T,et al.High-fat intake reshapes the circadian transcriptome profile and metabolism in murine meibomian glands [J].Front Nutr,2023,10:1146916.
[15] HUANG S Z,SI H L,LIU J M,QI D,PEI X T,LU D L,et al.Sleep loss causes dysfunction in murine extraorbital lacrimal glands [J].Invest Ophthalmol Vis Sci,2022,63 (6):19.
[16] ZOU S,JIAO X W,LIU J M,QI D,PEI X T,LU D L,et al.High-fat nutritional challenge reshapes circadian signatures in murine extraorbital lacrimal glands [J].Invest Ophthalmol Vis Sci,2022,63 (5):23.
[17] JIAO X W,PEI X T,LU D L,QI D,HUANG S Z,He S Y,et al.Microbial reconstitution improves aging-driven lacrimal gland circadian dysfunction [J].Am J Pathol,2021,191 (12):2091-2116.
[18] JIAO X W,LU D L,PEI X T,QI D,HUANG S Z,SONG Z M,et al.Type 1 diabetes mellitus impairs diurnal oscillations in murine extraorbital lacrimal glands [J].Ocul Surf,2020,18 (3):438-452.
[19] LU D L,LIN C P,JIAO X W,SONG Z M,WANG L Y,GU J Q,et al.Short-term high fructose intake reprograms the transcriptional clock rhythm of the murine extraorbital lacrimal gland [J].Invest Ophthalmol Vis Sci,2019,60 (6):2038-2048.
[20] ASHBURNER M,BALL C A,BLAKE J A,BOTSTEIN D,BUTLER H,CHERRY J M,et al.Gene ontology:tool for the unification of biology.The Gene Ontology Consortium [J].Nat Genet,2000,25 (1):25-29.
[21] THE GENE ONTOLOGY CONSORTIUM.The Gene Ontology Resource:20 years and still GOing strong [J].Nucleic Acids Res,2019,47 (D1):D330-D338.
[22] JANSE VAN RENSBURG D C,JANSEN VAN RENSBURG A,FOWLER P M,BENDER A M,STEVENS D,SULLIVAN K O,et al.Managing travel fatigue and jet lag in athletes:a review and consensus statement [J].Sports Med,2021,51(10):2029-2050.
[23] MONTARULI A,CASTELLI L,MUL A,SCURATI R,ESPOSITO F,GALASSO L,et al.Biological rhythm and chronotype:new perspectives in health [J].Biomolecules,2021,11 (4):487.
[24] 李琼,马常啸,陈丽红,杨光锐.重复6 h时差处理对小鼠行为节律影响 [J].大连理工大学学报,2022,62 (5):454-459.
LI Q,MA C X,CHEN L H,YANG G R.Influence of repetitive 6 h phase shifts treatment on circadian behavior of mice [J].J Dalian Univ Technol,2022,62 (5):454-459.
[25] CRAIG J P,NICHOLS K K,AKPEK E K,CAFFERY B,DUA H S,JOO C K,et al.TFOS DEWS II definition and classification report [J].Ocul Surf,2017,15 (3):276-283.
[26] 徐婷婷,邵毅,周琼.泪液标志物在系统性疾病中的研究进展[J].眼科新进展,2017,37 (8):780-784.
XU T T,SHAO Y,ZHOU Q.Recent progression on tear fluid markers in systemic disease [J].Rec Adv in Ophthalmol,2017,37(8):780-784.
[27] 张梦瑶,汪水风,邵毅.干眼的再生疗法研究进展[J].眼科新进展,2019,39 (12):1192-1196.
ZHANG M Y,WANG S F,SHAO Y.Regenerative medicine in dry eye [J].Rec Adv in Ophthalmol,2019,39 (12):1192-1196.
[28] GRASSO A,DI ZAZZO A,GIANNACCARE G,SUNG J,INOMATA T,SHIH K C,et al.Sex hormones related ocular dryness in breast cancer women [J].J Clin Med,2021,10 (12):2620.
[29] XUE Y,LIU P,WANG H,XIAO C,LIN C,LIU J,et al.Modulation of circadian rhythms affects corneal epithelium renewal and repair in mice [J].Invest Ophthalmol Vis Sci,2017,58 (3):1865-1874.
[30] GUO L,ZHANG T,WANG F,CHEN X,XU H,ZHOU C,et al.Targeted inhibition of Rev-erb-α/β limits ferroptosis to ameliorate folic acid-induced acute kidney injury [J].Br J Pharmacol,2021,178 (2):328-345.
[31] LEE J,KIM D E,GRIFFIN P,SHEEHAN P W,KIM D H,MUSIEK E S,et al.Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer’s disease [J].Aging Cell,2020,19 (2):e13078.

备注/Memo

备注/Memo:
国家自然科学基金(编号:82101089,82171014,81770962);河南省眼科研究所/河南省立眼科医院基础研究专项(编号:21JCZD001,23JCZD002);河南省医学科技攻关计划省部共建(重点)项目(编号:SBGJ202302098);河南省医学科学院青年医学科研人员研究项目(编号:QNYJ2023014)
更新日期/Last Update: 2024-04-05