[1]吴宛蔓,贾旭,谷浩,等.慢性高眼压青光眼食蟹猴巩膜及筛板生物力学特性的变化[J].眼科新进展,2023,43(9):686-691.[doi:10.13389/j.cnki.rao.2023.0138]
 WU Wanman,JIA Xu,GU Hao,et al.Changes in biomechanical properties of sclera and lamina cribrosa in cynomolgus monkeys with glaucoma induced by chronic high intraocular pressure[J].Recent Advances in Ophthalmology,2023,43(9):686-691.[doi:10.13389/j.cnki.rao.2023.0138]
点击复制

慢性高眼压青光眼食蟹猴巩膜及筛板生物力学特性的变化/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
43卷
期数:
2023年9期
页码:
686-691
栏目:
实验研究
出版日期:
2023-09-05

文章信息/Info

Title:
Changes in biomechanical properties of sclera and lamina cribrosa in cynomolgus monkeys with glaucoma induced by chronic high intraocular pressure
作者:
吴宛蔓贾旭谷浩陈美龄龚垚沈柏宇李朗
550004 贵州省贵阳市,贵州医科大学附属医院眼科
Author(s):
WU WanmanJIA XuGU HaoCHEN MeilingGONG YaoSHEN BoyuLI Lang
Department of Ophthalmology,Affiliated Hospital of Guizhou Medical University,Guiyang 550004,Guizhou Province,China
关键词:
青光眼巩膜筛板双轴拉伸纳米压痕食蟹猴
Keywords:
glaucoma sclera lamina cribrosa biaxial stretching nanoindentation cynomolgus monkey
分类号:
R775
DOI:
10.13389/j.cnki.rao.2023.0138
文献标志码:
A
摘要:
目的 探讨慢性高眼压(IOP)青光眼食蟹猴巩膜及筛板(LC)各区域生物力学特性的变化。
方法 选取健康雄性食蟹猴3只6眼,右眼建立慢性高IOP青光眼模型(实验组),左眼为正常对照眼(对照组)。慢性高IOP青光眼模型建模成功后获取双眼眼球并测量眼球外径,在上方、下方、鼻侧、颞侧4个象限获取视盘周围巩膜(ppSCl)组织试件并测量ppSCl厚度,对各象限ppSCl组织进行双轴拉伸、应力松弛和蠕变试验,并比较两组食蟹猴ppSCl组织弹性模量、应力松弛模量和蠕变率。获取含有巩膜的视盘组织试件并对ppSCl和LC组织进行生物纳米压痕试验,比较两组食蟹猴ppSCl和LC组织压缩模量。
结果 实验组食蟹猴眼球前后径和左右径均大于对照组(均为P<0.05),实验组食蟹猴ppSCl厚度小于对照组(P<0.001)。实验组食蟹猴下方象限ppSCl横向弹性模量大于轴向,上方、下方2个象限ppSCl横向瞬时模量和上方、下方、鼻侧3个象限ppSCl横向平衡模量均大于轴向(均为P<0.05)。实验组食蟹猴上方、鼻侧、颞侧3个象限ppSCl弹性模量,鼻侧、颞侧2个象限ppSCl瞬时模量,颞侧象限ppSCl平衡模量和4个象限ppSCl蠕变率,两个拉伸方向间比较差异均无统计学意义(均为P>0.05);对照组食蟹猴4个象限ppSCl横向弹性模量、瞬时模量和平衡模量均大于轴向(均为P<0.05),横向蠕变率小于轴向(P<0.05)。实验组食蟹猴ppSCl组织两个拉伸方向的弹性模量、瞬时模量和平衡模量均大于对照组(均为P<0.05),蠕变率均小于对照组(均为P<0.05)。实验组食蟹猴ppSCl组织压缩模量大于对照组(P<0.05),LC压缩模量小于对照组(P<0.05)。
结论 慢性高IOP青光眼改变了食蟹猴ppSCI及LC的生物力学特性,使ppSCl及LC对高IOP缓冲作用下降,导致视神经盘(ONH)对IOP抵抗力降低,最终造成ONH损伤,从生物力学角度提示为患者设定个性化目标IOP的重要性。
Abstract:
Objective To investigate the changes in biomechanical properties of sclera and lamina cribrosa (LC) in cynomolgus monkeys with glaucoma induced by chronic high intraocular pressure (IOP).
Methods Among the six eyes from three healthy male cynomolgus monkeys, chronic high IOP-induced glaucoma models were established in the right eyes (experimental group), and the left eyes were used as normal controls (control group). After modeling, the eyeballs of all eyes were removed to measure their outer diameter. Peripapillary sclera (ppSCl) tissues were sampled from the superior, inferior, nasal, and temporal areas to measure their thickness. Biaxial tensile, stress relaxation and creep tests were carried out on ppSCl tissues in each quadrant to obtain and compare their elastic moduli, stress relaxation moduli, and creep rates. Optic disc tissue specimens containing sclera were taken, and the compression moduli of ppSCl and LC tissues were obtained by the nanoindentation test.
Results The anterior-posterior and left-right lengths of eyeballs in the experimental group were larger than those in the control group (both P<0.05), while the ppSCl thickness in the experimental group was smaller than that in the control group (P<0.001). In the experimental group, the horizontal elastic modulus of ppSCl in the inferior quadrant, the horizontal instantaneous moduli of ppSCl in the superior and inferior quadrants, and the horizontal equilibrium moduli of ppSCl in the superior, inferior, and nasal quadrants were all larger than those in the axial direction (all P<0.05). No significant differences were found in the elastic modulus of ppSCl in the superior, nasal, and temporal quadrants, the instantaneous modulus of ppSCl in the nasal and temporal quadrants, the equilibrium modulus of ppSCl in the temporal quadrant, and the creep rate in the four quadrants in both the horizontal and axial directions in the experimental group (all P>0.05). The horizontal elastic, instantaneous, and equilibrium moduli of ppSCl in the four quadrants in the control group were higher than those in the axial direction (all P<0.05), while the horizontal creep rates were lower than those in the axial direction (all P<0.05). The elastic, instantaneous, and equilibrium moduli of ppSCl in the two directions in the experimental group were higher, while the creep rates were lower than those in the control group (all P<0.05). The compression modulus of ppSCl in the experimental group was greater than that in the control group (P<0.05), while the compression modulus of LC was smaller than that in the control group (P<0.05).
Conclusion Chronic high IOP-induced glaucoma changes the biomechanical properties of ppSCl and LC in cynomolgus monkeys, reducing their buffering effect on high IOP. As a result, the resistance of the optic nerve head (ONH) to IOP is reduced, eventually causing ONH damage. This suggests the importance of setting a personalized IOP target for patients from a biomechanical perspective.

参考文献/References:

[1] VROEMEN P A M M,GORGELS T G M F,WEBERS C A B,DE BOER J.Modeling the mechanical parameters of glaucoma[J].Tissue Eng Part B Rev,2019,25(5):412-428.
[2] JU W K,PERKINS G A,KIM K Y,BASTOLA T,CHOI W Y,CHOI S H.Glaucomatous optic neuropathy:mitochondrial dynamics,dysfunction and protection in retinal ganglion cells[J].Prog Retin Eye Res,2022,95:101136.
[3] YAO F,PENG J,ZHANG E,JI D,GAO Z,TANG Y,et al.Pathologically high intraocular pressure disturbs normal iron homeostasis and leads to retinal ganglion cell ferroptosis in glaucoma[J].Cell Death Differ,2023,30(1):69-81.
[4] GBD 2019 Blindness and Vision Impairment Collaborators,Vision Loss Expert Group of the Global Burden of Disease Study.Causes of blindness and vision impairment in 2020 and trends over 30 years,and prevalence of avoidable blindness in relation to VISION 2020:the Right to Sight:an analysis for the Global Burden of Disease Study[J].Lancet Glob Health,2021,9(2):e144-e160.
[5] THAM Y C,LI X,WONG T Y,QUIGLEY H A,AUNG T,CHENG C Y.Global prevalence of glaucoma and projections of glaucoma burden through 2040:a systematic review and meta-analysis[J].Ophthalmology,2014,121(11):2081-2090.
[6] LEE S H,KIM T W,LEE E J,KIL H.Association between optic nerve sheath diameter and lamina cribrosa morphology in normal-tension glaucoma[J].J Clin Med,2023,12(1):360.
[7] GIRARD M J A,SUH J K,BOTTLANG M,BURGOYNE C F,DOWNS J C.Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations[J].Invest Ophthalmol Vis Sci,2011,52(8):5656-5669.
[8] VAN HAAFTEN E E,DUIJVELSHOFF R,IPPEL B D,SONTJENS S H M,VAN HOUTEM M H C J,JANSSEN H M,et al.The degradation and performance of electrospun supramolecular vascular scaffolds examined upon in vitro enzymatic exposure[J].Acta Biomater,2019,92:48-59.
[9] BURGOYNE C F,DOWNS J C,BELLEZZA A J,SUH J K,HART R T.The optic nerve head as a biomechanical structure:a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage[J].Prog Retin Eye Res,2005,24(1):39-73.
[10] CAMPBELL I C,COUDRILLIER B,ROSS ETHIER C.Biomechanics of the posterior eye:a critical role in health and disease[J].J Biomech Eng,2014,136(2):021005.
[11] DOWNS J C,ENSOR M E,BELLEZZA A J,THOMPSON H W,HART R T,BURGOYNE C F.Posterior scleral thickness in perfusion-fixed normal and early-glaucoma monkey eyes[J].Invest Ophthalmol Vis Sci,2001,42(13):3202-3208.
[12] NORMAN R E,FLANAGAN J G,SIGAL I A,RAUSCH S M,TERTINEGG I,ETHIER C R.Finite element modeling of the human sclera:influence on optic nerve head biomechanics and connections with glaucoma[J].Exp Eye Res,2011,93(1):4-12.
[13] WANG B,HUA Y,BRAZILE B L,YANG B,SIGAL I A.Collagen fiber interweaving is central to sclera stiffness[J].Acta Biomater,2020,113:429-437.
[14] HUA Y,VOORHEES A P,JAN N J,WANG B,WAXMAN S,SCHUMAN J S,et al.Role of radially aligned scleral collagen fibers in optic nerve head biomechanics[J].Exp Eye Res,2020,199:108188.
[15] SZETO J,CHOW A,MCCREA L,MOZZER A,NGUYEN T D,QUIGLEY H A,et al.Regional differences and physiologic behaviors in peripapillary scleral fibroblasts[J].Invest Ophthalmol Vis Sci,2021,62(1):27.
[16] JAN N J,SIGAL I A.Collagen fiber recruitment:a microstructural basis for the nonlinear response of the posterior pole of the eye to increases in intraocular pressure[J].Acta Biomater,2018,72:295-305.
[17] GIRARD M J,DAHLMANN-NOOR A,RAYAPUREDDI S,BECHARA J A,BERTIN B M,JONES H,et al.Quantitative mapping of scleral fiber orientation in normal rat eyes[J].Invest Ophthalmol Vis Sci,2011,52(13):9684-9693.
[18] PIJANKA J K,KIMBALL E C,PEASE M E,ABASS A,SORENSEN T,NGUYEN T D,et al.Changes in scleral collagen organization in murine chronic experimental glaucoma[J].Invest Ophthalmol Vis Sci,2014,55(10):6554-6564.
[19] DANFORD F L,YAN D,DREIER R A,CAHIR T M,GIRKIN C A,VANDE GEEST J P.Differences in the region- and depth-dependent microstructural organization in normal versus glaucomatous human posterior sclerae[J].Invest Ophthalmol Vis Sci,2013,54(13):7922-7932.
[20] SIGAL I A,YANG H,ROBERTS M D,BURGOYNE C F,DOWNS J C.IOP-induced lamina cribrosa displacement and scleral canal expansion:an analysis of factor interactions using parameterized eye-specific models[J].Invest Ophthalmol Vis Sci,2011,52(3):1896-1907.
[21] IOMDINA E N,TIKHOMIROVA N K,BESSMERTNY A M,SEREBRYAKOVA M V,BAKSHEEVA V E,ZALEVSKY A O,et al.Alterations in proteome of human sclera associated with primary open-angle glaucoma involve proteins participating in regulation of the extracellular matrix[J].Mol Vis,2020,26:623-640.
[22] MEHR J A,HATAMI-MARBINI H.Experimental and numerical analysis of electroactive characteristics of scleral tissue[J].Acta Biomater,2022,143:127-137.
[23] HATAMI-MARBINI H,MEHR J A.Modeling and experimental investigation of electromechanical properties of scleral tissue; a CEM model using an anisotropic hyperelastic constitutive relation[J].Biomech Model Mechanobiol,2022,21(5):1325-1337.
[24] PACHENARI M,HATAMI-MARBINI H.Regional differences in the glycosaminoglycan role in porcine scleral hydration and mechanical behavior[J].Invest Ophthalmol Vis Sci,2021,62(3):28.
[25] HATAMI-MARBINI H,PACHENARI M.Tensile viscoelastic properties of the sclera after glycosaminoglycan depletion[J].Curr Eye Res,2021,46(9):1299-1308.
[26] LIU L,LIU Y,LI T,LI L,QIAN X,LIU Z.A feasible method for independently evaluating the mechanical properties of glial LC and RGC axons by combining atomic force microscopy measurement with image segmentation[J].J Mech Behav Biomed Mater,2022,126:105041.
[27] OMODAKA K,MAEKAWA S,AN G,TSUDA S,SHIGA Y,TAKADA N,et al.Pilot study for three-dimensional assessment of laminar pore structure in patients with glaucoma,as measured with swept source optical coherence tomography[J].PLoS One,2018,13(11):e0207600.

相似文献/References:

[1]李翔 谢钊 郭红建 谢学军 路雪婧 王毅 王超.补肾活血中药对大鼠慢性高眼压模型外侧膝状体病理改变的影响[J].眼科新进展,2012,32(1):000.
[2]范虹 刘五存 蔡鸿英 赵堪兴.改良二极管激光睫状体光凝术治疗中晚期青光眼[J].眼科新进展,2012,32(4):000.
[3]王建萍 赵燕麟 马勇 朱涛 程燕 车选义 赵桂娥 王柯.噻吗洛尔和布林佐胺联合曲伏前列素治疗原发性开角型青光眼与高眼压患者的临床研究[J].眼科新进展,2012,32(5):000.
[4]彭坤 靳隽 杨玉新 许银霞 王保君 闫义涛 杨华.长期联合应用噻吗洛尔对结膜组织炎性标记物ICAM-1和HLA-DR表达的影响[J].眼科新进展,2012,32(6):000.
[5]马恩普 赵小钊 董良 刘苏冰 曾照年.Healaflow在青光眼小梁切除术中的应用[J].眼科新进展,2012,32(6):000.
[6]王勇 叶应嘉 鲍先议 周龑丽 许荣 彭婷婷 曾志富.同轴微小切口超声乳化吸出术在青光眼滤过术后白内障摘出术中的应用[J].眼科新进展,2012,32(7):000.
[7]李勇子 刘桂香 王玲 隋爱玲 郭强强 万鲁芹.TIMP-2基因转染FDM豚鼠模型早期后极部巩膜中MMP-2的动态表达[J].眼科新进展,2012,32(12):000.
[8]李翔 马世勇 李娟 王毅.补肾活血中药对大鼠慢性高眼压模型视神经病理改变的影响[J].眼科新进展,2013,33(2):000.
[9]白东娥 刘伟 季建.抗青光眼药物对青光眼患者泪液胰岛素水平的影响及其与眼表改变的关系[J].眼科新进展,2013,33(6):000.
[10]马英慧 张铁民 齐建平.原发性开角型青光眼与慢性原发性闭角型青光眼视网膜神经纤维层厚度与视野缺损的关系[J].眼科新进展,2013,33(7):000.

备注/Memo

备注/Memo:
国家自然科学基金资助(编号:81960175);贵州省科技计划项目[编号:黔科合基础(2019)1268号];贵州省科学技术厅项目[编号:黔科合平台人才(2017)5718];贵州省卫健委科学技术基金项目(编号:gzwjkj2017-1-042)
更新日期/Last Update: 2023-09-05