[1]刘宇航,毛小雪,牛媖,等.青光眼发病机制相关分子途径研究进展[J].眼科新进展,2021,41(3):290-295.[doi:10.13389/j.cnki.rao.2021.0061]
 LIU Yuhang,MAO Xiaoxue,NIU Ying,et al.Research progress on molecular pathways related to the pathogenesis of glaucoma[J].Recent Advances in Ophthalmology,2021,41(3):290-295.[doi:10.13389/j.cnki.rao.2021.0061]
点击复制

青光眼发病机制相关分子途径研究进展/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
41卷
期数:
2021年3期
页码:
290-295
栏目:
文献综述
出版日期:
2021-03-05

文章信息/Info

Title:
Research progress on molecular pathways related to the pathogenesis of glaucoma
作者:
刘宇航毛小雪牛媖刘思源任婉娜
730030 甘肃省兰州市,兰州大学第二医院眼科
Author(s):
LIU YuhangMAO XiaoxueNIU YingLIU SiyuanREN Wanna
Department of Ophthalmology,Lanzhou University Second Hospital,Lanzhou 730030,Gansu Province,China
关键词:
青光眼靶向治疗表观遗传调控细胞凋亡氧化应激损伤阿尔茨海默病β淀粉样蛋白
Keywords:
glaucoma targeted?therapy epigenetic regulation cell apoptosis oxidative stress injury Alzheimer’s disease amyloid beta
分类号:
R775
DOI:
10.13389/j.cnki.rao.2021.0061
文献标志码:
A
摘要:
青光眼是以视野缺损、视力下降、神经节细胞不可逆性凋亡为主要特征的神经退行性疾病。多数患者的发病原因难以用单一因素解释,关于青光眼病理生理机制的研究也尚无一个确切的定论可以涵盖所有。关于青光眼的治疗方法,目前临床上主要为药物、手术或者联合多种方式降低眼压,辅以营养神经等,但对于部分眼压不高或开角型青光眼患者疗效不显著。针对青光眼这个世界性难题的基础病理生理机制的研究及可能相关的靶点治疗,也许是未来青光眼疾病治疗的一个重要发展方向。
Abstract:
Glaucoma is a neurodegenerative disease characterized by visual field defect, visual loss and irreversible apoptosis of ganglion cells. As the largest irreversible blindness disease in the world, its pathogenesis of most patients is difficult to be explained by a single factor, and the research on the pathophysiological mechanism of glaucoma has not been conclusive enough to cover all. As for the treatment of glaucoma, it is mainly used in clinical practice to reduce intraocular pressure by means of drugs, surgery or combination, supplemented by the treatment of vegetative nerve, etc., but the curative effect is not significant for some patients with low intraocular pressure or open-angle glaucoma. The study of the underlying pathophysiological mechanism of glaucoma as a worldwide problem and the possible target therapy may be an important future development direction in the treatment of glaucoma diseases.

参考文献/References:

[1] THAM Y C,LI X,WONG T Y,QUIGLEY H A,AUNG T,CHENG C Y.Global prevalence of glaucoma and projections of glaucoma burden through 2040:a systematic review and meta-analysis[J].Ophthalmology,2014,121(11):2081-2090.
[2] WADDINGTON C H.The epigenotype 1942[J].Int J Epidemiol,2012,41(1):10-13.
[3] 张又嘉,陈宇虹,雷苑.表观遗传调控与青光眼发病机制研究进展[J].眼科新进展,2019,39(5):477-481.
ZHANG Y J,CHEN Y H,LEI Y.Progress in epigenetics and glaucoma.[J].Rec Adv Ophthalmol,2019,39(5):477-481.
[4] TAMMEN S A,FRISO S,CHOI S W.Epigenetics:the link between nature and nurture[J].Mol Aspects Med,2013,34(4):753-764.
[5] CHEN Q W,ZHU X Y,LI Y Y,MENG Z Q.Epigenetic regulation and cancer[J].Oncol Rep,2014,31(2):523-532.
[6] SHARMA S,KELLY T K,JONES P A.Epigenetics in cancer[J]. Carcinogenesis,2010,31(1):27-36.
[7] BURDON K P,AWADALLA M S,MITCHELL P,WANG J J,WHITE A,KEANE M C,et al.DNA methylation at the 9p21 glaucoma susceptibility locus is associated with normal-tension glaucoma[J].Ophthalmic Genet,2018,39(2):221-227.
[8] ZHAVORONKOV A,IZUMCHENKO E,KANHERKAR R R,TEKA M,CANTOR C,MANAYE K,et al. Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma[J].Cell Cycle,2016,15(12):1643-1652.
[9] WALLACE D M.Hypoxia-induced changes in DNA methylation alter RASAL1 and TGF-β1 expression in human trabecular mesh- work cells[J]. PLoS One,2016,11(4):e0153354.
[10] PERRI F,LONGO F,GIULIANO M,SABBATINO F,FAVIA G,IONNA F,et al. Epigenetic control of gene expression:Potential im- plications for cancer treatment[J]. Crit Rev Oncol Hematol,2017,111:166-172.
[11] EGGE R G,LIANG G,APARICIO A,JONES P A.Epigenetics in human disease and prospects for epigenetic therapy[J].Nature,2004,429(6990):457-463.
[12] BERMUDEZ J Y,WEBBER H C,PATEL G C,LIU X,CHENG Y Q,CLARK A F,et al.HDAC inhibitor-mediated epigenetic regulation of glaucoma-associated TGF-β2 in the trabecular meshwork[J].Invest Ophthalmol Vis Sci,2016,57(8):3698-3707.
[13] PERRI F,LONGO F,GIULIANO M,SABBATINO F,FAVIA G,IONNA F,et al.Epigenetic control of gene expression:Potential im- plications for cancer treatment[J].Crit Rev Oncol Hematol,2017,111:166-172.
[14] BARTEL D P.MicroRNAs:genomics,biogenesis,mechanism,and function[J].Cell,2004,116(2):281-297.
[15] HU R,LI H,LIU W,YANG L,TAN Y F,LUO X H.Targeting miRNAs in osteoblast differentiation and bone formation[J].Exp Opin Ther Targ,2010,14(10):1109-1120.
[16] FRIEDMAN R C,BURGE C B.MicroRNA target finding by comparative genomics[J].Meth Mol Biol,2014,1097:457-476.
[17] GHANBARI M,IGLESIAS A I,SPRINGELKAMP H,VANDUIJN C M,IKRAM M A,DEHGHAN A,et al.A genome-wide Scan for micro RNA-related genetic variants associated with primary open-angle glaucoma[J].Invest Ophthalmol Vis Sci,2017,58(12):5368-5377.
[18] 吴姗姗,田庆梅,高延娥,毕宏生.青光眼视神经节细胞凋亡的作用机制研究进展[J].眼科新进展,2019,39(9):882-885.
WU S S,TIAN Q M,GAO Y E,BI H S.Advances in research on the mechanism of apoptosis of glaucoma optic ganglion cells.[J].Rec Adv Ophthalmol,2019,39(9):882-885.
[19] CADENAS E,PACKER L,TRABER M G.Antioxidants,oxidants and redox impacts on cell function—A tribute to Helmut Sies.Arch.[J].Biochem Biophys,2016,595:94-99.
[20] SALLAM N,LAHER I.Exercise modulates oxidative stress and inflammation in aging and cardiovascular diseases.[J].Oxid Med Cell Longev,2016,2016:7239639.
[21] SERGIO C S,PAOLO C,STEFANO G,DANIELE F,SAMIR SUKKAR,EUGENIO L I,et al.Substances of interest that support glaucoma therapy[J].Nutrients,2019,11(2):239.
[22] PULLIERO A,SEYDEL A,CAMOIRANO A,SACCA S C,SANDRI M,IZZOTTI A.Oxidative damage and autophagy in the human trabecular meshwork as related with ageing[J].PLoS One,2014,9:e98106.
[23] PORTER K,NALLATHAMBI J,LIN Y,LITON P B.Lysosomal basifification and decreased autophagic flflux in oxidatively stressed trabecular meshwork cells:Implications for glaucoma pathogenesis[J].Autophagy,2013,9:581-594.
[24] ATSUKO K,KAZUHIKO N,XIAO L G,TAKAHIKO N,CHIKAKO H,TAKAYUKI H.Targeting oxidative stress for treatment of glaucoma and optic neuritis[J].Oxid Med Cell Longev,2017,2017:2817252.
[25] FINKEL T,HOLBROOK N J.Oxidants,oxidative stress and the biology of ageing[J].Nature,2000,408(6809):239-247.
[26] CHRISTENSEN K,DOBLHAMMER G,RAU R,VAUPEL J W.Ageing populations:the challenges ahead[J].Lancet,2009,374(9696):1196-208.
[27] SAGNIK S,ROHIT S,MANJARI T,DEEPTI V,REBIKA D.Neurodegeneration in Alzheimer’s disease and glaucoma:overlaps and missing links[J].Eye(Lond),2020,34(9):1546-1553.
[28] BAYER A U,FERRARI F,ERB C.High occurrence rate of glaucoma among patients with Alzheimer’s disease[J].Eur Neurol,2002,47:165-168.
[29] YOCHIM B P,MUELLER A E,KANE K D,KAHOOK M Y.Prevalence of cognitive impairment,depression,and anxiety symptoms among older adults with glaucoma[J].Glaucoma,2012,21:250-254.
[30] LIN I C,WANG Y H,WANG T J,WANG I J,SHEN Y D,CHI N F,et al.Glaucoma,Alzheimer’s disease,and Parkinson’s disease:an 8- year population-based follow-up study[J].PLoS One,2014,9:e108938.
[31] BACH H D,KESSING S V,MOGENSEN U,FORMAN J L,ANDERSEN P K,KESSING L V.Normal tension glaucoma and Alzheimer disease:comorbidity?[J].Acta Ophthalmol,2012,90:683-685.
[32] WHITEHOUSE P,PRICE D,CLARK A,COYLE J,DELONG M.Alzheimer disease:evidence for selective loss of cholinergic neurons in the nucleus basalis[J].Ann Neurol,1981,10:122-126.
[33] VANDE N J,NAFE R,SCHLOTE W.Non-tau based neuronal degeneration in Alzheimer’s disease-an immunocytochemical and quantitative study in the supragranular layers of the middle temporal neocortex[J].Brain Res,2008,1213:152-65.
[34] HINTON D,SADUN A,BLANKS J,MILLER C.Optic-nerve degeneration in Alzheimer’s disease[J].N Engl J Med,1986,315:485-487.
[35] ASCASO F J,CRUZ N,MODREGO P J,LOPEZ-ANTON R,SANTABARBARA J,PASCUAL L F,et al.Retinal alterations in mild cognitive impairment and Alzheimer’s disease:an optical coherence tomography study[J].J Neurol,2014,261(8):1522-1530.
[36] WEINREB R N,KHAW P T.Primary open-angle glaucoma.[J].Lancet,2004,363:1711-1720.
[37] CHEUNG W,GUO L,CORDEIRO M F.Neuroprotection in glaucoma:drug-based approaches[J].Optom Vis Sci,2008,85:406-416.
[38] KUMAR M,TANWAR M,FAIQ MA,PANI J,SHAMSI MB,DADA T,et al.Mitochondrial DNA nucleotide changes in primary con genital glaucoma patients[J].Mol Vis,2013,19:220-230.
[39] TANWAR M,DADA T,SIHOTA R,DADA R.Mitochondrial DNA analysis in primary congenital glaucoma[J].Mol Vis,2010,16:518-533.
[40] FAHRENHOLZ F.Alpha-secretase as a therapeutic target[J].Curr Alz heimer Res,2007,(4):412-417.
[41] CACERES A,KOSIK K S.Inhibition of neurite polarity by tau antisense oligo nucleotides in primary cerebellar neurons[J].Nature,1990,343(6257):461-463.
[42] KING M E,KAN H M,BAAS P W,ERISIR A,GLABE C G,BLOOM G S.Tau-dependent microtubule disassembly initiated by prefibrillar beta-amyloid[J].Cell Biol,2006,175(4):541-546.
[43] KHAN S S,BLOOM G S.Tau:the center of a signaling nexus in Alzheimer’s disease [J].Front Neurosci,2016,10:31.
[44] BRION J P.The role of neurofibrillary tangles in Alzheimer disease[J].Acta Neurol Belg,1998,98(2):165-174.
[45] SORRENTINO G,BONAVITA V.Neurodegeneration and Alzheimer’s disease:the lesson from tauopathies[J].Neurol Sci,2007,28(2):63-71.
[46] HSIA A Y,MASLIAH E,MCCONLOGUE L,YU G Q,TATSUNO G,HU K,et al.Plaque independent disruption of neural circuits in Alzheimer’s disease mouse models[J].Proc Natl Acad Sci U S A,1999,96(6):3228-3233.
[47] WALSH D M,KLYUBIN I,FADEEVA J V,CULLEN W K,ANWYL R,WOLFE M S,et al.Naturally secreted oligomers of amyloid beta protein potently inhibit hip pocampal long-term potentiation in vivo[J].Nature,2002,416(6880):535-539.
[48] HSIEH H,BOEHM J,SATO C,IWATSUBO T,TOMITA T,SISODIA S,et al.AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss [J].Neuron,2006,52(5):831-843.
[49] SHANKAR G M,BLOODGOOD B L,TOWNSEND M,WALSH D M,SELKOE D J,SABATINI B L.Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor dependent signaling pathway[J].Neuro Sci,2007,27(11):2866-2875.
[50] VEZZANI A,GRANATA T.Brain inflammation in epilepsy:experimental and clinical evidence [J].Epilepsia,2005,46(11):1724-1743.
[51] MINKEVICIENE R,RHEIMS S,DOBSZAY M B,ZILBERTER M,HARTIKAINEN J,FULOP L,et al.Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy [J].Neuro Sci,2009,29(11):3453-3462.
[52] HUANG H M,ZHANG H,XU H,GIBSON G E.Inhibition of the alpha-ketoglutarate dehydrogenase complex alters mitochondrial function and cellular calcium regulation[J].Biochim Biophys Acta,2003,1637(1):119-126.
[53] BUBBER P,HAROUTUNIAN V,FISCH G,BLASS J P,GIBSON G E.Mitochondrial abnormalities in Alzheimer brain:mechanistic implications[J].Ann Neurol,2005,57(5):695-703.
[54] RHEIN V,SONG X,WIESNER A,ITTNER L M,BAYSANG G,MEIER F,et al.Amyloid beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice[J].Proc Natl Acad Sci U S A,2009,106(47):20057-20062.
[55] SWERDLOW R H,BURNS J M,KHAN S M.The Alzheimer’s disease mitochondrial cascade hypothesis:progress and perspectives[J].Biochim Biophys Acta,2014,1842(8):1219-1231.
[56] OHYAGI Y,ASAHARA H,CHUI D H,TSURUTA Y,SAKAE N,MIYOSHI K,et al.Intracellular Abeta42 activates p53 promoter:a pathway to neurodegen eration in Alzheimer’s disease[J].FASEB J,2005,19(2):255-257.
[57] SUO Z,COX A A,BARTELLI N,RASUL I,FESTOFF B W,PREMONT R T,et al.GRK5 deficiency leads to early Alzheimer-like pathology and working memory impairment[J].Neurobiol Aging,2007,28(12):1873-1888.
[58] SONKUSARE S K,KAUL C L,RAMARAO P.Dementia of Alzheimer’s disease and other neurodegenerative disorders-memantine,a new hope[J].Pharmacol Res,2005,51(1):1-17.
[59] SHANKAR G M,LI S,MEHTA T H,GARCIA-MUNOZ A,SHEPARDSON N E,SMITH I,et al.Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory[J].Nat Med,2008,14(8):837-842.
[60] MINTER M R,TAYLOR J M,CRACK P J.The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease[J].J Neurochem,2016,136(3):457-474.
[61] VANNOSTRAND W E.The influence of the amyloid ss-protein and its pre cursor in modulating cerebral hemostasis[J].Biochim Biophys Acta,2016,1862(5):1018-1026.
[62] ANAND R,GILL K D,MAHDI A A.Therapeutics of Alzheimer’s disease:Past,present and future[J].Neuropharmacology,2014,76:27-50.
[63] KIRBY E,BANDELOW S,HOGERVORST E.Visual impairment in Alzheimer’s disease:a critical review [J].Alzheimers Dis,2010,21(1):15-34.
[64] KLEIN B E,KLEIN R,SPONSEL W E,FRANKE T,CANTOR L B,MARTONE J,et al.Prevalence of glaucoma.The Beaver Dam Eye Study[J].Ophthalmology,1992,99(10):1499-1504.
[65] BONOMI L,MARCHINI G,MARRAFFA M,BERNARDI P,DE FRANCO I,PERFETTI S,et al.Prevalence of glaucoma and intraocular pressure distribution in a defifined population.The Egna Neumarkt Study[J].Ophthalmology,1998,105(2):209-215.
[66] IWASE A,SUZUKI Y,ARAIE M,YAMAMOTO T,ABE H,SHIRATO S,et al.The prevalence of primary open-angle glaucoma in Japanese:the Tajimi Study[J].Ophthalmology,2004,111(9):1641-1648.
[67] GUPTA V,YOU Y,LI J,GUPTA V,GOLZAN M,KLISTORNER A,VAN DEN BUUSE M,AND GRAHAM S.BDNF impairment is associated with age-related changes in the inner retina and exacerbates experimental glaucoma[J].Biochim Biophys Acta,2014,1842:1567-1578.
[68] TSURUMA K,TANAKA Y,SHIMAZAWA M,HARA H.Induction of amyloid precursor protein by the neurotoxic peptide,amyloid-beta 25-35,causes retinal ganglion cell death[J].J Neurochem,2010,113(6):1545-1554.
[69] MOHD LAZALDIN M A,IEZHITSA I,AGARWAL R,BAKAR N S,AGARWAL P,MOHD ISMAIL N.Time-and-dose-related effects of amyloid betal-40 on retina and optic nerve morphology in rats[J].Int J Neurosci,2018,128(10):952-965.
[70] LIN R,FU X,LEI C,YANG M,QIU Y,LEI B.Intravitreal injection of amyloid β1-42 activates the complement system and induces retinal inflammatory responses and malfunction in mouse[J].Adv Exp Med Biol,2019,1185:347-352.
[71] LI G,SALT T E,LUONG V Y,WOOD N,CHEUNG W,MAASS A,et al.Targeting amyloid-beta in glaucoma treatment.[J].Proc Natl Acad Sci U S A,2007,104(33):13444-13449.

相似文献/References:

[1]李翔 谢钊 郭红建 谢学军 路雪婧 王毅 王超.补肾活血中药对大鼠慢性高眼压模型外侧膝状体病理改变的影响[J].眼科新进展,2012,32(1):000.
[2]范虹 刘五存 蔡鸿英 赵堪兴.改良二极管激光睫状体光凝术治疗中晚期青光眼[J].眼科新进展,2012,32(4):000.
[3]王建萍 赵燕麟 马勇 朱涛 程燕 车选义 赵桂娥 王柯.噻吗洛尔和布林佐胺联合曲伏前列素治疗原发性开角型青光眼与高眼压患者的临床研究[J].眼科新进展,2012,32(5):000.
[4]彭坤 靳隽 杨玉新 许银霞 王保君 闫义涛 杨华.长期联合应用噻吗洛尔对结膜组织炎性标记物ICAM-1和HLA-DR表达的影响[J].眼科新进展,2012,32(6):000.
[5]马恩普 赵小钊 董良 刘苏冰 曾照年.Healaflow在青光眼小梁切除术中的应用[J].眼科新进展,2012,32(6):000.
[6]王勇 叶应嘉 鲍先议 周龑丽 许荣 彭婷婷 曾志富.同轴微小切口超声乳化吸出术在青光眼滤过术后白内障摘出术中的应用[J].眼科新进展,2012,32(7):000.
[7]李翔 马世勇 李娟 王毅.补肾活血中药对大鼠慢性高眼压模型视神经病理改变的影响[J].眼科新进展,2013,33(2):000.
[8]白东娥 刘伟 季建.抗青光眼药物对青光眼患者泪液胰岛素水平的影响及其与眼表改变的关系[J].眼科新进展,2013,33(6):000.
[9]冯冬梅 朱鸿 施彩虹.CXC趋化因子及其受体在糖尿病视网膜病变中的作用[J].眼科新进展,2013,33(6):000.
[10]马英慧 张铁民 齐建平.原发性开角型青光眼与慢性原发性闭角型青光眼视网膜神经纤维层厚度与视野缺损的关系[J].眼科新进展,2013,33(7):000.

备注/Memo

备注/Memo:
甘肃省自然科学基金资助(编号:18JR3RA314)
更新日期/Last Update: 2021-03-05