[1]李海东,方伟,吴素兰,等.非增生期糖尿病视网膜病变患者黄斑区血流密度变化:基于OCTA的定量分析[J].眼科新进展,2021,41(2):170-173.[doi:10.13389/j.cnki.rao.2021.0036]
 LI Haidong,FANG Wei,WU Sulan,et al.Quantitative analysis of macular vessel density changes in non-proliferative diabetic retinopathy through optical coherence tomography angiography[J].Recent Advances in Ophthalmology,2021,41(2):170-173.[doi:10.13389/j.cnki.rao.2021.0036]
点击复制

非增生期糖尿病视网膜病变患者黄斑区血流密度变化:基于OCTA的定量分析/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
41卷
期数:
2021年2期
页码:
170-173
栏目:
应用研究
出版日期:
2021-02-05

文章信息/Info

Title:
Quantitative analysis of macular vessel density changes in non-proliferative diabetic retinopathy through optical coherence tomography angiography
作者:
李海东方伟吴素兰廉恒丽徐小琼董思思沈丽君
310020 浙江省杭州市,温州医科大学附属眼视光医院杭州院区
Author(s):
LI HaidongFANG WeiWU SulanLIAN HengliXU XiaoqiongDONG SisiSHEN Lijun
Hangzhou Branch of Eye Hospital,Wenzhou Medical University,Hangzhou 310020,Zhejiang Province,China
关键词:
糖尿病视网膜病变黄斑血流密度光学相干断层扫描血管成像
Keywords:
diabetic retinopathy macula vessel density optic coherence tomography angiography
分类号:
R774.1
DOI:
10.13389/j.cnki.rao.2021.0036
文献标志码:
A
摘要:
目的 应用光学相干断层扫描血管成像(OCTA)定量分析非增生期糖尿病视网膜病变(NPDR)患者黄斑区视网膜血流密度(retinal vessel density,RVD)的改变。方法 回顾性横断面观察性研究。纳入2019年1月至12月在温州医科大学附属眼视光医院杭州院区就诊的2型糖尿病且伴NPDR的患者28例45眼(NPDR组),以及同期年龄、性别与之匹配的正常体检者20人40眼(正常对照组)。所有受检眼均采用分频幅去相关血流成像算法OCTA检查,扫描以黄斑中心凹为中心的3 mm×3 mm范围视网膜,自动获取黄斑旁中心凹区(中心1~3 mm)浅层和深层RVD并进行比较。结果 NPDR组黄斑旁中心凹区RVD平均值与正常对照组相比,浅层下降6.47%[(43.54±4.43)%、(46.55±4.13)%],深层下降6.06%[(45.62±5.87)%、(48.56±5.31)%],差异均有统计学意义(均为P<0.05)。NPDR组浅层RVD各象限平均值均低于正常对照组,差异均有统计学意义[颞侧(42.34±4.40)%、(46.06±3.85)%,上方(44.33±5.57)%、(47.92±4.26)%,鼻侧(42.96±4.50)%、(45.50±4.31)%,下方(44.58±4.45)%、(46.88±4.94)%,均为P<0.05],其中颞侧RVD下降幅度最大(8.07%)。NPDR组深层RVD各象限平均值均低于正常对照组,除上方象限差异无统计学意义外[(45.43±6.30)%、(47.82±5.54)%,P=0.068],其他象限差异均有统计学意义[颞侧(45.84±5.71)%、(49.54±4.86)%,鼻侧(46.53±5.91)%、(49.45±5.29)%,下方(44.62±6.64)%、(47.43±5.91)%,均为P<0.05],其中颞侧RVD下降幅度最大(7.48%)。结论 NPDR患者存在黄斑区浅层和深层视网膜毛细血管损害,颞侧尤甚。
Abstract:
Objective To investigate quantitative changes of macular retinal vessel density (RVD) in non-proliferative diabetic retinopathy (NPDR) through optical coherence tomography angiography (OCTA). Methods A retrospective cross-sectional observational study. From January to December 2019, twenty-eight patients (45 eyes) with NPDR from Type 2 diabetes mellitus (NPDR group) and 20 individuals (40 eyes) of age and sex matched healthy subjects (control group) in Hangzhou Branch of Eye Hospital of Wenzhou Medical University were included in the study. Automated OCTA/split-spectrum amplitude decorrelation angiography was applied in all eyes. A 3 mm×3 mm scan centered on the fovea was obtained, and the RVDs of superficial and deep retinal plexuses in parafoveal (central 1-3 mm) zone were analyzed.Results Compared with the control group, the average parafoveal superficial and deep RVD of NPDR group decreased by 6.47% [(43.54±4.43)%,(46.55±4.13)%] and 6.06% [(45.62±5.87)%,(48.56±5.31)%] respectively, and both differences were statistically significant (all P<0.05). The superficial RVDs in all quadrants of the NPDR group were lower than those of the normal control group [temporal (42.34±4.40)%, (46.06±3.85)%, superior (44.33±5.57)%, (47.92±4.26)%, nasal (42.96±4.50)%, (45.50±4.31)%, inferior (44.58±4.45)%, (46.88±4.94)%, respectively, all P<0.05)]. Furthermore, the temporal quadrant had the largest vessel density reduction (8.07%). Similarly, the deep RVDs of all quadrants of the NPDR group were lower than their counterparts, and except that the difference in the superior quadrant was not statistically significant [(45.43±6.30)%, (47.82±5.54)%, P=0.068], the difference in the other quadrants was statistically significant [temporal (45.84±5.71)%, (49.54±4.86)%, nasal (46.53±5.91)%, (49.45±5.29)%, inferior (44.62±6.64)%, (47.43±5.91)%, respectively, all P<0.05]. The temporal area also had the largest vessel density reduction (7.48%).Conclusion The macular superficial and deep retinal capillary layers are damaged in the patients with NPDR, especially in the temporal part.

参考文献/References:

[1] HARTNETT M E,BAEHR W,LE Y Z.Diabetic retinopathy,an overview[J].Vision Res,2017,139:1-6.
[2] VARMA R,BRESSLER N M,DOAN Q V,GLEESON M,DANESE M,BOWER J K,et al.Prevalence of and risk factors for diabetic macular edema in the united states[J].JAMA Ophthalmol,2014,132(11):1334-1340.
[3] 李沐叶,张学东.OCTA在糖尿病视网膜病变的临床应用研究进展[J].眼科新进展,2020,40(5):482-486.
LI M Y,ZHANG X D.Research advances on clinical application of OCTA in diabetic retinopathy[J].Rec Adv Ophthalmol,2020,40(5):482-486.
[4] 中华医学会糖尿病学分会.中国2型糖尿病防治指南(2017年版) [J].中华糖尿病杂志,2018,10(1):4-67.
Chinese Diabetes Society,Chinese Medical Association.Chinese guidelines for the management of type 2 diabetesmellitIls (2017)[J].Chin J Diabet Mell,2018,10(1):4-67.
[5] 中华医学会眼科学会眼底病学组.我国糖尿病视网膜病变临床诊疗指南(2014年) [J].中华眼科杂志,2014,50(11):851-865.
Chinese Ocular Fundus Diseases Society,Chinese Ophthalmological Society,Chinese Medical Association.Chinese clinical management guidelines for diabeitc retinopathy(2014)[J].Chin J Ophthalmol,2014,50(11):851-865.
[6] YU J,JIANG C,WANG X,ZHU L,GU R,XU H,et al.Macular perfusion in healthy Chinese:an optical coherence tomography angiogram study[J].Invest Ophthalmol Vis Sci,2015,56(5):3212-3217.
[7] IAFE N A,PHASUKKIJWATANA N,CHEN X,SARRAF D.Retinal capillary density and foveal avascular zone area are age-dependent:quantitative analysis using optical coherence tomography angiography[J].Invest Ophthalmol Vis Sci,2016,57(13):5780-5787.
[8] HWANG T S,GAO S S,LIU L,LAUER A K,BAILEY S T,FLAXEL C J,et al.Automated quantification of capillary nonperfusion using optical coherence tomography angiography in diabetic retinopathy[J].JAMA Ophthalmol,2016,134(4):367-373.
[9] KIM A Y,CHU Z,SHAHIDZADEH A,WANG R K,PULIAFITO C A,KASHANI A H.Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography[J].Invest Ophthalmol Vis Sci,2016,57(9):362-370.
[10] TAN P E,BALARATNASINGAM C,XU J,MAMMO Z,HAN S X,MACKENZIE P,et al.Quantitative comparison of retinal capillary images derived by speckle variance optical coherence tomography with histology[J].Invest Ophthalmol Vis Sci,2015,56(6):3989-3996.
[11] LUPIDI M,COSCAS F,CAGINI C,FIORE T,SPACCINI E,FRUTTINI D,et al.Automated quantitative analysis of retinal microvasculature in normal eyes on optical coherence tomography angiography[J].Am J Ophthalmol,2016,169(1):9-23.
[12] SAMBHAV K,ABU-AMERO K K,CHALAM K V.Deep capillary macular perfusion indices obtained with OCT angiography correlate with degree of nonproliferative diabetic retinopathy[J].Eur J Ophthalmol,2017,27(6):716-729.
[13] ISHIBAZAWA A,NAGAOKA T,TAKAHASHI A,OMAE T,TANI T,SOGAWA K,et al.Optical coherence tomography angiography in diabetic retinopathy:a prospective pilot study[J].Am J Ophthalmol,2015,160(1):35-44.
[14] MARIA B,GERARD A.Retinal and choroidal vasculature:retinal oxygenation[M]// Andrew P.Ryan’s Retina.6th ed.Amsterdam:Elsevier,2018:488-503.

相似文献/References:

[1]杜玮 刘子扬 周艳艳 雒雷鸣.糖尿病视网膜病变与血清胆红素水平的关系[J].眼科新进展,2012,32(5):000.
[2]范松涛 卢建民.阿司匹林与糖尿病患者玻璃体出血以及玻璃体切割术疗效的相关性研究[J].眼科新进展,2012,32(11):000.
[3]李艳 李筱荣 袁佳琴 潘斌.糖尿病大鼠视网膜中VEGF、PEDF的表达与血-视网膜屏障损伤[J].眼科新进展,2013,33(1):000.
[4]李朝晖 崔治华 胡晓英 孟丽珠 张敬维.糖尿病视网膜病变激光面积与疗效的分析[J].眼科新进展,2013,33(2):000.
[5]冯冬梅 朱鸿 施彩虹.CXC趋化因子及其受体在糖尿病视网膜病变中的作用[J].眼科新进展,2013,33(6):000.
[6]牛淑玲.糖尿病视网膜病变患者HbAlc、FPG与血小板参数的变化及危险因素分析[J].眼科新进展,2013,33(7):000.
[7]毕春潮 王睿 王建洲 雷春灵 董晓娟 王小莉 薛晓辉.Ad-PEDF对糖尿病视网膜病变大鼠视网膜新生血管的抑制作用[J].眼科新进展,2013,33(8):000.
[8]杨萍 孙书明 李晓鹏.辛伐他汀对糖尿病视网膜病变和炎症因子的影响[J].眼科新进展,2013,33(8):000.
[9]罗文婷 孙大卫.血管黏附蛋白-1在眼科疾病中的研究进展[J].眼科新进展,2013,33(8):000.
[10]李小璐 马雅玲.糖尿病视网膜病变大鼠视网膜VEGF和PEDF的动态表达[J].眼科新进展,2013,33(9):000.

备注/Memo

备注/Memo:
N/A
更新日期/Last Update: 2021-02-05