[1]刘子源,郝然,周义霖,等.角膜神经漩涡结构的形态特点以及与眼表状态的关系[J].眼科新进展,2021,41(1):053-56.[doi:10.13389/j.cnki.rao.2021.0011]
 LIU Ziyuan,HAO Ran,ZHOU Yilin,et al.Structural features of the vortex of corneal epithelial basal nerve plexus and their correlations with ocular surface status[J].Recent Advances in Ophthalmology,2021,41(1):053-56.[doi:10.13389/j.cnki.rao.2021.0011]
点击复制

角膜神经漩涡结构的形态特点以及与眼表状态的关系/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
41卷
期数:
2021年1期
页码:
053-56
栏目:
应用研究
出版日期:
2021-01-05

文章信息/Info

Title:
Structural features of the vortex of corneal epithelial basal nerve plexus and their correlations with ocular surface status
作者:
刘子源郝然周义霖荆大兰王海昆高爽李学民
100191 北京市,北京大学第三医院眼科
Author(s):
LIU ZiyuanHAO RanZHOU YilinJING DalanWANG HaikunGAO ShuangLI Xuemin
Department of Ophthalmology,the Third Hospital of Peking University,Beijing 100191,China
关键词:
角膜上皮基底神经角膜神经漩涡眼表综合分析仪激光断层扫描系统眼表
Keywords:
corneal epithelial basal nerve nerve vortex ocular surface analyzer laser scanning confocal microscope ocular surface
分类号:
R774.5
DOI:
10.13389/j.cnki.rao.2021.0011
文献标志码:
A
摘要:
目的 探讨角膜神经漩涡结构的形态特点以及与眼表状态的关系。方法 回顾性分析2018年1月至2020年6月在北京大学第三医院眼科行眼表检查的451例(836眼)患者资料,共计分析1262人次检查结果。所有患者下睑中央泪河高度、泪膜破裂时间和上睑睑板腺形态均由眼表综合分析仪(德国OCULUS公司)获得,角膜神经漩涡图像由激光断层扫描系统(德国海德堡公司) Rostock 角膜模块获得,图像大小为400 μm×400 μm。每眼获取的角膜神经漩涡图像不低于5张。结果 本研究观察到2种神经漩涡形态:螺旋状漩涡和网状漩涡。在本次观察结果中,螺旋状漩涡占65.9%,网状漩涡占34.1%。漩涡有3种方向:顺时针、逆时针和无方向。以顺时针方向最多见,占81.2%。随访期内,漩涡神经沿其漩涡方向发生旋转式位移,但其形态类型和方向不发生转换。双眼角膜神经漩涡的形态类型及方向大多相同。螺旋状漩涡眼的下睑中央泪河高度[(0.19±0.07)mm]较网状漩涡[(0.21±0.07)mm]低,差异有统计学意义(P<0.05)。顺时针漩涡眼的泪膜破裂时间[(4.34±1.94)s]比逆时针漩涡[(3.76±1.66)s]长,差异有统计学意义(P<0.05);上睑板腺缺损评分[(1.94±0.83)分]较逆时针漩涡[(2.23±0.76)分]低,差异有统计学意义(P<0.05)。结论 角膜神经漩涡结构存在2种形态和3种方向,以顺时针多见。神经沿其漩涡方向进行旋转式位移,不发生形态和方向的逆转。不同漩涡形态、方向伴随不同的眼表状态。
Abstract:
Objective To investigate the morphological characteristics of corneal nerve vortex structure and its relationship with ocular surface state.Methods The data of 451 patients (836 eyes) who underwent ocular surface examination in Peking University Third Hospital from January 2018 to June 2020 were retrospectively analyzed. A total of 1262 examination results were analyzed. The central lacrimal river height of lower eyelid, tear film break-up time and upper eyelid meibomian gland morphology of all patients were obtained by ocular surface analyzer (Oculus, Germany). The images of corneal nerve vortex were obtained by Rostock corneal module of laser scanning confocal microscope (Heidelberg, Germany). The image size was 400 μ m × 400 μ m.No less than 5 images of corneal nerve vortex were obtained in each eye.Results There were two kinds of nerve vortex, spiral vortex and reticular vortex. The spiral vortex accounted for 65.9%, and the reticular vortex accounted for 34.1%. The vortex had three directions:clockwise, anticlockwise and no direction. Most of them were clockwise, accounting for 81.2%. During the follow-up period, the vortex nerve rotated along the direction of the vortex, but the shape and direction of the vortex did not change. Most participants had both eyes the same vortex shape and direction. The central lacrimal river height of lower eyelid of spiral vortex eye [(0.19 ± 0.07) mm] was lower than that of reticular vortex eye [(0.21 ± 0.07) mm], and the difference was statistically significant (P<0.05). The tear film break-up time of clockwise vortex eyes [(4.34 ± 1.94) s] was longer than that of anticlockwise vortex eyes [(3.76 ± 1.66) s], and the difference was statistically significant (P<0.05). The upper meibomian gland defect score of clockwise vortex (1.94 ± 0.83) was lower than that of anticlockwise vortex (2.23 ± 0.76), and the difference was statistically significant (P<0.05).Conclusion There are two types of corneal nerve vortex and three kinds of directions, with clockwise spiral vortex the most common. The nerve vortex moves in rotation according to its direction and does not change its shape and direction. Different vortex types and directions are associated with different ocular surface status.

参考文献/References:

[1] PATEL D V,MCGHEE C N.Mapping of the normal human corneal sub-basal nerve plexus by in vivo laser scanning confocal microscopy[J].Invest Ophthalmol Vis Sci,2005,46(12):4485-4488.
[2] 于花,苗英彬,赵少贞.激光扫描共聚焦显微镜对涡状区和中央区角膜上皮基底神经丛检测一致性比较[J].眼科新进展,2020,40(5):461-465.
YU H,MIAO Y B,ZHAO S Z.Comparison of consistency for laser scanning confocal microscopy in detecting corneal epithelial basal nerve plexus between the whorl-like region and central cornea [J].Rec Adv Ophthalmol,2020,40(5):461-465.
[3] KALTENIECE A,FERDOUSI M,PETROPOULOS I,AZMI S,ADAM S,FADAVI H,et al.Greater corneal nerve loss at the inferior whorl is related to the presence of diabetic neuropathy and painful diabetic neuropathy[J].Sci Rep,2018,8(1):3283.
[4] PETROPOULOS I N,FERDOUSI M,MARSHALL A,ALAM U,PONIRAKIS G,AZMI S,et al.The inferior whorl for detecting diabetic peripheral neuropathy using corneal confocal microscopy[J].Invest Ophthalmol Vis Sci,2015,56(4):2498-2504.
[5] ARITA R,ITOH K,INOUSE K,AMANO S.Noncontact infrared meibography to document age-related changes of the meibomian glands in a normal population[J].Ophthalmology,2008,115(5):911-915.
[6] KOKOT J,WYLEGALA A,WOWRA B,WOJCIK L,DOBROWOLSKI D.Corneal confocal sub-basal nerve plexus evaluation:a review[J].Acta Ophthalmol,2018,96(3):232-242.
[7] CRUZAT A,QAZI Y,HAMRAH P.In vivo confocal microscopy of corneal nerves in health and disease[J].Ocul Surf,2017,15(1):15-47.
[8] MARFURT C F,COX J,DEEK S,DVORSCAK L.Anatomy of the human corneal innervation[J].Exp Eye Res,2010,90(4):478-492.
[9] PATEL D V,MCGHEE C N.In vivo laser scanning confocal microscopy confirms that the human corneal sub-basal nerve plexus is a highly dynamic structure[J].Invest Ophthalmol Vis Sci,2008,49(8):3409-3412.
[10] UTSUNOMIYA T,NAGAOKA T,HANADA K,OMAE T,YOKOTA H,ABIKO A,et al.Imaging of the corneal subbasal whorl-like nerve plexus:More accurate depiction of the extent of corneal nerve damage in patients with diabetes[J].Invest Ophthalmol Vis Sci,2015,56(9):5417-5423.
[11] PUTTGEN S,BONHOF G J,STROM A,MUSSIG K,SZENDROEDI J,RODEN M,et al.Augmented corneal nerve fiber branching in painful compared with painless diabetic neuropathy[J].J Clin Endocrinol Metab,2019,104(12):6220-6228.
[12] MARFURT C,ANOKWUTE M C,FETCKO K,MAHONY-PEREZ E,FAROOQ H,ROSS E,et al.Comparative anatomy of the mammalian corneal subbasal nerve plexus[J].Invest Ophthalmol Vis Sci,2019,60(15):4972-4984.
[13] HE J,BAZAN N G,BAZAN H E.Mapping the entire human corneal nerve architecture[J].Exp Eye Res,2010,91(4):513-523.
[14] LAGALI N S,ALLGEIER S,GUIMARAES P,BADIAN R A,RUGGERI A,KOHLER B,et al Wide-field corneal subbasal nerve plexus mosaics in age-controlled healthy and type 2 diabetes populations[J].Sci Data,2018,5:180075.
[15] REICHARD M,HOVAKIMYAN M,WREE A,MEYER-LINDENBERG A,NOLTE I,JUNGHANS C,et al.Comparative in vivo confocal microscopical study of the cornea anatomy of different laboratory animals[J].Curr Eye Res,2010,35(12):1072-1080.
[16] LUM E,GOLEBIOWSKI B,SWARBRICK H A.Mapping the corneal sub-basal nerve plexus in orthokeratology lens wear using in vivo laser scanning confocal microscopy[J].Invest Ophthalmol Vis Sci,2012,53(4):1803-1809.
[17] 杨钊,陈琦.活体共聚焦显微镜下干燥综合征角膜潜基质神经纤维变化与临床症状相关性分析[J].国际眼科杂志,2020,20(5):749-753.
YANG Z,CHEN Q.An in vivo confocal microscopy study:correlation between morphological changes of corneal subbasal nerve and clinical symptoms of Sjgren syndrome [J].Int Eye Sci,2020,20(5):749-753.
[18] AL RASHAH K,PRITCHARD N,DEHGHANI C,RUGGERI A,GUIMARAES P,RUSSELL A,et al.Corneal nerve migration rate in a healthy control population[J].Optom Vis Sci,2018,95(8):672-677.
[19] Ll RASHAH K,PRITCHARD N,DEHGHANI C,RUGGERI A,GUIMARAES P,POOLE C,et al.Repeatability of measuring corneal nerve migration rate in individuals with and without diabetes[J].Cornea,2016,35(10):1355-1361.
[20] EDWARDS K,PRITCHARD N,POOLE C,DEHGHANI C,AL RASHAH K,RUSSELL A,et al.Development of a novel technique to measure corneal nerve migration rate[J].Cornea,2016,35(5):700-705.

备注/Memo

备注/Memo:
国家自然科学基金资助(编号:81900826)
更新日期/Last Update: 2021-01-05