[1]王中原,孙劲禹,谢田华,等.长链非编码RNA在糖尿病视网膜病变发病机制中的作用[J].眼科新进展,2020,40(5):487-491.[doi:10.13389/j.cnki.rao.2020.0112]
 WANG Zhongyuan,SUN Jinyu,XIE Tianhua,et al.Research progress on role of lncRNA in diabetic retinopathy[J].Recent Advances in Ophthalmology,2020,40(5):487-491.[doi:10.13389/j.cnki.rao.2020.0112]
点击复制

长链非编码RNA在糖尿病视网膜病变发病机制中的作用/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
40卷
期数:
2020年5期
页码:
487-491
栏目:
文献综述
出版日期:
2020-05-05

文章信息/Info

Title:
Research progress on role of lncRNA in diabetic retinopathy
作者:
王中原孙劲禹谢田华殷丽姚勇
214023 江苏省无锡市,南京医科大学附属无锡人民医院
Author(s):
WANG ZhongyuanSUN JinyuXIE TianhuaYIN LiYAO Yong
Wuxi People’s Hospital Affiliated to Nanjing Medical University,Wuxi 214023,Jiangsu Province,China
关键词:
糖尿病视网膜病变长链非编码RNA基因调控
Keywords:
iabetic retinopathy lncRNA gene regulation
分类号:
R774.1
DOI:
10.13389/j.cnki.rao.2020.0112
文献标志码:
A
摘要:
糖尿病视网膜病变(diabetic retinopathy,DR)是一种严重的糖尿病微血管并发症,是糖尿病患者失明的主要原因之一。长链非编码RNA (long non-coding RNA,lncRNA)是一类核苷酸数大于200且不编码蛋白质的RNA,在多种生理和病理过程中发挥重要作用。最新研究表明,在糖尿病及其相关微血管并发症中广泛存在lncRNA的异常表达。本文将对目前DR相关lncRNA的基因组起源以及其在DR发生发展中的分子机制及调控作用进行综述,并讨论lncRNA在DR诊断和治疗中的前景。
Abstract:
Diabetic retinopathy (DR) is a severe diabetic microvascular complication, and is one of the major reasons for blindness in patients with diabetes mellitus. Long non-coding RNA (lncRNA) is a kind of RNA with more than 200 nucleotides and without protein coding, and plays a significant role in multiple physiological and pathological processes. Recent studies show aberrant expression of lncRNA has been widely observed in patients with diabetes mellitus and diabetes related microvascular complications. This article reviews the genomic origins of DR-related lncRNA and their molecular mechanisms and regulatory roles in the development of DR, and discusses the potential of lncRNA in the diagnosis and treatment of DR.

参考文献/References:

[1] BOURNE R R,STEVENS G A,WHITE R A,SMITH J L,FLAXMAN S R,PRICE H,et al.Causes of vision loss worldwide,1990-2010: a systematic analysis[J].Lancet Glob Health,2013,1(6):e339-e349.
[2] WAN T T,LI X F,SUN Y M,LI Y B,SU Y.Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy[J].Biomed Pharmacother,2015,74:145-147.
[3] YAN Y,XU Z,LI Z,SUN L,GONG Z.An insight into the increasing role of lncRNAs in the pathogenesis of gliomas[J].Front Mol Neurosci,2017,10:53.
[4] YAN B,TAO Z F,LI X M,ZHANG H,YAO J,JIANG Q.Aberrant expression of long noncoding RNAs in early diabetic retinopathy[J].Invest Ophthalmol Vis Sci,2014,55(2):941-951.
[5] SORRENTINO F S,ALLKABES M,SALSINI G,BONIFAZZI C,PERRI P.The importance of glial cells in the homeostasis of the retinal microenvironment and their pivotal role in the course of diabetic retinopathy[J].Life Sci,2016,162:54-59.
[6] SUN X,WONG D.Long non-coding RNA-mediated regulation of glucose homeostasis and diabetes[J].Am J Cardiovasc Dis,2016,6(2):17-25.
[7] YAN B,YAO J,LIU J Y,LI X M,WANG X Q,LI Y J,et al.lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA[J].Circ Res,2015,116(7):1143-1156.
[8] ISHII N,OZAKI K,SATO H,MIZUNO H,SAITO S,TAKAHASHI A,et al.Identification of a novel non-coding RNA,MIAT,that confers risk of myocardial infarction[J].J Hum Genet,2006,51(12):1087-1099.
[9] ZHANG J,CHEN M,CHEN J,LIN S,CAI D,CHEN C,et al.Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis[J].Biosci Rep,2017,37(2):BSR20170036.
[10] CHEN L L,CARMICHAEL G G.Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA[J].Mol Cell,2009,35(4):467-478.
[11] CHEN X,KONG J,MA Z,GAO S,FENG X.Up regulation of the long non-coding RNA NEAT1 promotes esophageal squamous cell carcinoma cell progression and correlates with poor prognosis[J].Am J Cancer Res,2015,5(9):2808-2815.
[12] CHAKRAVARTY D,SBONER A,NAIR S S,GIANNOPOULOU E,LI R,HENNIG S,et al.The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer[J].Nat Commun,2014,5:5383.
[13] FU S,DONG S,ZHU M,SHERRY D M,WANG C,YOU Z,et al.Müller glia are a major cellular source of survival signals for retinal neurons in diabetes[J].Diabetes,2015,64(10):3554-3563.
[14] LI X J.Long non-coding RNA nuclear paraspeckle assembly transcript 1 inhibits the apoptosis of retina Müller cells after diabetic retinopathy through regulating miR-497/brain-derived neurotrophic factor axis[J].Diab Vasc Dis Res,2018,15(3):204-213.
[15] MODARRESI F,FAGHIHI M A,LOPEZ-TOLEDANO M A,FATEMI R P,MAGISTRI M,BROTHERS S P,et al.Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation[J].Nat Biotechnol,2012,30(5):453-459.
[16] LI Y,XU F,XIAO H,HAN F.Long noncoding RNA BDNF-AS inversely regulated BDNF and modulated high-glucose induced apoptosis in human retinal pigment epithelial cells[J].J Cell Biochem,2018,119(1):817-823.
[17] 杨勇.含WW结构域的氧化还原酶在儿童骨肉瘤中表达的临床意义[J].中华实用儿科临床杂志,2018,33(23):1796-1798.
YANG Y.Expression and clinical significance of oxido-reductase containing WW structure domain in tissue of children with osteosarcoma[J].J Appl Clin Pediatr,2018,33(23): 1796-1798.
[18] 马世江,尉娜,韩艳艳,谭军.腺苷预处理对氧糖剥夺复氧糖后星形胶质细胞中血管内皮生长因子和血管生成素-1水平的影响[J].新乡医学院学报,2018,35(2):106-109.
MA S J,WEI N,H Y Y,TAN J.Influence of adenosine preconditioning on vascular endothelial growth factor and angiopoietin-1 in oxygen-glucose deprivation and reoxygenation astrocytes[J].J Xinxiang Med Univ,2018,35(2):106-109.
[19] BOCHENEK G,HASLER R,EL M N,KONIG I R,LOOS B G,JEPSEN S,et al.The large non-coding RNA ANRIL,which is associated with atherosclerosis,periodontitis and several forms of cancer,regulates ADIPOR1,VAMP3 and C11ORF10[J].Hum Mol Genet,2013,22(22):4516-4527.
[20] SATO K,NAKAGAWA H,TAJIMA A,YOSHIDA K,INOUE I.ANRIL is implicated in the regulation of nucleus and potential transcriptional target of E2F1[J].Oncol Rep,2010,24(3):701-707.
[21] YAN J,DUTTA B,HEE Y T,CHNG W J.Towards understanding of PRC2 binding to RNA[J].RNA Biol,2019,16(2):176-184.
[22] THOMAS A A,FENG B,CHAKRABARTI S.ANRIL: A Regulator of VEGF in Diabetic Retinopathy[J].Invest Ophthalmol Vis Sci,2017,58(1):470-480.
[23] RUIZ M A,FENG B,CHAKRABARTI S.Polycomb repressive complex 2 regulates MiR-200b in retinal endothelial cells: potential relevance in diabetic retinopathy[J].PLoS One,2015,10(4):e123987.
[24] PETRI R,MALMEVIK J,FASCHING L,AKERBLOM M,JAKOBSSON J.miRNAs in brain development[J].Exp Cell Res,2014,321(1):84-89.
[25] SHAN K,JIANG Q,WANG X Q,WANG Y N,YANG H,YAO M D,et al.Role of long non-coding RNA-RNCR3 in atherosclerosis-related vascular dysfunction[J].Cell Death Dis,2016,7(6):e2248.
[26] SHAN K,LI C P,LIU C,LIU X,YAN B.RNCR3: A regulator of diabetes mellitus-related retinal microvascular dysfunction[J].Biochem Biophys Res Commun,2017,482(4):777-783.
[27] JI P,DIEDERICHS S,WANG W,BOING S,METZGER R,SCHNEIDER P M,et al.MALAT-1,a novel noncoding RNA,and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer[J].Oncogene,2003,22(39):8031-8041.
[28] MICHALIK K M,YOU X,MANAVSKI Y,DODDABALLAPUR A,ZORNIG M,BRAUN T,et al.Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth[J].Circ Res,2014,114(9):1389-1397.
[29] LIU J Y,YAO J,LI X M,SONG Y C,WANG X Q,LI Y J,et al.Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus[J].Cell Death Dis,2014,5:e1506.
[30] SUN Y,LIU Y X.LncRNA HOTTIP improves diabetic retinopathy by regulating the p38-MAPK pathway[J].Eur Rev Med Pharmacol Sci,2018,22(10):2941-2948.
[31] GROTE P,WITTLER L,HENDRIX D,KOCH F,WAHRISCH S,BEISAW A,et al.The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse[J].Dev Cell,2013,24(2):206-214.
[32] KUN-PENG Z,CHUN-LIN Z,XIAO-LONG M.Antisense lncRNA FOXF1-AS1 promotes migration and invasion of osteosarcoma cells through the FOXF1/MMP-2/-9 pathway[J].Int J Biol Sci,2017,13(9):1180-1191.
[33] REN X,USTIYAN V,PRADHAN A,CAI Y,HAVRILAK J A,BOLTE C S,et al.FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells[J].Circ Res,2014,115(8):709-720.
[34] SHI Y,CHEN C,XU Y,LIU Y,ZHANG H,LIU Y.LncRNA FENDRR promotes high-glucose-induced proliferation and angiogenesis of human retinal endothelial cells[J].Biosci Biotechnol Biochem,2019,83(5):869-875.
[35] ZHANG D,QIN H,LENG Y,LI X,ZHANG L,BAI D,et al.LncRNA MEG3 overexpression inhibits the development of diabetic retinopathy by regulating TGF-beta1 and VEGF[J].Exp Ther Med,2018,16(3):2337-2342.
[36] EL-ASRAR A M.Role of inflammation in the pathogenesis of diabetic retinopathy[J].Middle East Afr J Ophthalmol,2012,19(1):70-74.
[37] MISHRA M,DURAISAMY A J,KOWLURU R A.Sirt1: A guardian of the development of diabetic retinopathy[J].Diabetes,2018,67(4):745-754.
[38] ZHANG T H,HUANG C M,GAO X,WANG J W,HAO L L,JI Q.Gastrodin inhibits high glucoseinduced human retinal endothelial cell apoptosis by regulating the SIRT1/TLR4/NFkappaBp65 signaling pathway[J].Mol Med Rep,2018,17(6):7774-7780.
[39] TONG P,PENG Q H,GU L M,XIE W W,LI W J.LncRNA-MEG3 alleviates high glucose induced inflammation and apoptosis of retina epithelial cells via regulating miR-34a/SIRT1 axis[J].Exp Mol Pathol,2019,107:102-109.
[40] DONG N,XU B,SHI H.Long noncoding RNA MALAT1 acts as a competing endogenous RNA to regulate Amadori-glycated albumin-induced MCP-1 expression in retinal microglia by a microRNA-124-dependent mechanism[J].Inflamm Res,2018,67(11-12):913-925.
[41] DONG N,XU B,SHI H,LU Y.miR-124 regulates amadori-glycated albumin-induced retinal microglial activation and inflammation by targeting Rac1[J].Invest Ophthalmol Vis Sci,2016,57(6):2522-2532.
[42] MA M Z,CHU B F,ZHANG Y,WENG M Z,QIN Y Y,GONG W,et al.Long non-coding RNA CCAT1 promotes gallbladder cancer development via negative modulation of miRNA-218-5p[J].Cell Death Dis,2015,6:e1583.
[43] DONG N,XU B,SHI H,TANG X.Baicalein inhibits amadori-glycated albumin-induced MCP-1 Expression in retinal ganglion cells via a microRNA-124-dependent mechanism[J].Invest Ophthalmol Vis Sci,2015,56(10):5844-5853.
[44] WHEELER S E,LEE N Y.Emerging roles of transforming growth factor beta signaling in diabetic retinopathy[J].J Cell Physiol,2017,232(3):486-489.
[45] PEREZ V L,CASPI R R.Immune mechanisms in inflammatory and degenerative eye disease[J].Trends Immunol,2015,36(6):354-363.
[46] LI Q,PANG L,YANG W,LIU X,SU G,DONG Y.Long non-coding RNA of myocardial infarction associated transcript (LncRNA-MIAT) promotes diabetic retinopathy by upregulating transforming growth factor-beta1 (TGF-beta1) signaling[J].Med Sci Monit,2018,24:9497-9503.
[47] THOMAS A A,BISWAS S,FENG B,CHEN S,GONDER J,CHAKRABARTI S.lncRNA H19 prevents endothelial-mesenchymal transition in diabetic retinopathy[J].Diabetologia,2019,62(3):517-530.
[48] KOVACIC J C,MERCADER N,TORRES M,BOEHM M,FUSTER V.Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease[J].Circulation,2012,125(14):1795-1808.
[49] GABORY A,JAMMES H,DANDOLO L.The H19 locus: role of an imprinted non-coding RNA in growth and development[J].Bioessays,2010,32(6):473-480.
[50] FENG B,CAO Y,CHEN S,CHU X,CHU Y,CHAKRABARTI S.miR-200b mediates endothelial-to-mesenchymal transition in diabetic cardiomyopathy[J].Diabetes,2016,65(3):768-779.
[51] ZHANG L,YANG F,YUAN J H,YUAN S X,ZHOU W P,HUO X S,et al.Epigenetic activation of the miR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma[J].Carcinogenesis,2013,34(3):577-586.
[52] OZCAN G,OZPOLAT B,COLEMAN R L,SOOD A K,LOPEZ-BERESTEIN G.Preclinical and clinical development of siRNA-based therapeutics[J].Adv Drug Deliv Rev,2015,87:108-119.
[53] WU Y,JIA K,WU H,SANG A,WANG L,SHI L,et al.A comprehensive competitive endogenous RNA network pinpoints key molecules in diabetic retinopathy[J].Mol Med Rep,2019,19(2):851-860.

相似文献/References:

[1]杜玮 刘子扬 周艳艳 雒雷鸣.糖尿病视网膜病变与血清胆红素水平的关系[J].眼科新进展,2012,32(5):000.
[2]范松涛 卢建民.阿司匹林与糖尿病患者玻璃体出血以及玻璃体切割术疗效的相关性研究[J].眼科新进展,2012,32(11):000.
[3]李艳 李筱荣 袁佳琴 潘斌.糖尿病大鼠视网膜中VEGF、PEDF的表达与血-视网膜屏障损伤[J].眼科新进展,2013,33(1):000.
[4]李朝晖 崔治华 胡晓英 孟丽珠 张敬维.糖尿病视网膜病变激光面积与疗效的分析[J].眼科新进展,2013,33(2):000.
[5]冯冬梅 朱鸿 施彩虹.CXC趋化因子及其受体在糖尿病视网膜病变中的作用[J].眼科新进展,2013,33(6):000.
[6]牛淑玲.糖尿病视网膜病变患者HbAlc、FPG与血小板参数的变化及危险因素分析[J].眼科新进展,2013,33(7):000.
[7]毕春潮 王睿 王建洲 雷春灵 董晓娟 王小莉 薛晓辉.Ad-PEDF对糖尿病视网膜病变大鼠视网膜新生血管的抑制作用[J].眼科新进展,2013,33(8):000.
[8]杨萍 孙书明 李晓鹏.辛伐他汀对糖尿病视网膜病变和炎症因子的影响[J].眼科新进展,2013,33(8):000.
[9]罗文婷 孙大卫.血管黏附蛋白-1在眼科疾病中的研究进展[J].眼科新进展,2013,33(8):000.
[10]李小璐 马雅玲.糖尿病视网膜病变大鼠视网膜VEGF和PEDF的动态表达[J].眼科新进展,2013,33(9):000.
[11]郎海波,黄敏丽.长链非编码RNA在糖尿病视网膜病变发展及治疗中的研究进展[J].眼科新进展,2019,39(5):482.[doi:10.13389/j.cnki.rao.2019.0111]
 LANG Hai-Bo,HUANG Min-Li.Research progress of lncRNA in the development and treatment of diabetic retinopathy[J].Recent Advances in Ophthalmology,2019,39(5):482.[doi:10.13389/j.cnki.rao.2019.0111]
[12]邵珺,王杨宁致,詹鹏飞.高糖环境下lncRNA MEG3对人视网膜血管内皮细胞增殖和迁移的作用及其机制[J].眼科新进展,2021,41(7):621.[doi:10.13389/j.cnki.rao.2021.0128]
 SHAO Jun,WANGYANG Ningzhi,ZHAN Pengfei.Effects of lncRNA MEG3 on the growth and migration of human retinal microvascular endothelial cells under high glucose environment and its mechanisms[J].Recent Advances in Ophthalmology,2021,41(5):621.[doi:10.13389/j.cnki.rao.2021.0128]
[13]邱煜焱,杨旭,苟文军,等.2型糖尿病患者血清lncRNA MALAT1表达水平与视网膜病变的关系[J].眼科新进展,2022,42(12):971.[doi:10.13389/j.cnki.rao.2022.0199]
 QIU Yuyan,YANG Xu,GOU Wenjun,et al.Relationship between the expression level of long non-coding ribonucleic acid metastasis associated lung adenocarcinoma transcript 1 in serum and retinopathy in patients with type 2 diabetes mellitus[J].Recent Advances in Ophthalmology,2022,42(5):971.[doi:10.13389/j.cnki.rao.2022.0199]
[14]王艳平,刘含军.长链非编码RNA(LncRNA)母系表达基因3(MEG3)对糖尿病视网膜病变大鼠模型视网膜血管内皮细胞凋亡的影响[J].眼科新进展,2023,43(1):018.[doi:10.13389/j.cnki.rao.2023.0004]
 WANG Yanping,LIU Hanjun.Effect of long non-coding ribonucleic acid maternally expressed gene 3 on retinal vascular endothelial cell apoptosis in rats with diabetes retinopathy[J].Recent Advances in Ophthalmology,2023,43(5):018.[doi:10.13389/j.cnki.rao.2023.0004]

备注/Memo

备注/Memo:
国家自然科学基金面上项目(编号:81770941);江苏省科教强卫重点学科项目(编号:ZDXKC2016008)
更新日期/Last Update: 2020-05-05