[1]訾迎新,金明.氧化应激在高度近视发病机制中的作用研究进展[J].眼科新进展,2020,40(4):388-391.[doi:10.13389/j.cnki.rao.2020.0090]
 ZI Yingxin,JIN Ming.Recent advances on oxidative stress in pathogenesis of high myopia[J].Recent Advances in Ophthalmology,2020,40(4):388-391.[doi:10.13389/j.cnki.rao.2020.0090]
点击复制

氧化应激在高度近视发病机制中的作用研究进展/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
40卷
期数:
2020年4期
页码:
388-391
栏目:
文献综述
出版日期:
2020-04-05

文章信息/Info

Title:
Recent advances on oxidative stress in pathogenesis of high myopia
作者:
訾迎新金明
100029 北京市,北京中医药大学(訾迎新);100029 北京市,中日友好医院眼科(金明)
Author(s):
ZI Yingxin1JIN Ming2
1.Beijing University of Chinese Medicine,Beijing 100029,China
2.Department of Ophthalmology,China-Japan Friendship Hospital,Beijing 100029,China
关键词:
氧化应激高度近视发病机制综述
Keywords:
oxidative stress high myopia pathogenesis review
分类号:
R778
DOI:
10.13389/j.cnki.rao.2020.0090
文献标志码:
A
摘要:
近视是发生率最高的屈光不正,已经成为世界范围内的公共卫生问题。我国有约6亿的近视患者,其中高度近视(high myopia,HM)患者超过8000万。目前近视的发生趋于年轻化、高度化,HM眼底病变尤其黄斑病变是东亚国家主要的致盲原因。迄今为止,HM的具体发病机制尚未阐明。越来越多的研究表明,其发生与遗传基因、环境因素、分子生物学和巩膜生物力学变化等有密切关系,氧化应激(oxidative stress,OS)在其中起重要作用。OS过程中能产生活性氧自由基和活性氮自由基,聚集在视网膜和脉络膜中,通过多种机制诱导巩膜细胞凋亡、细胞外基质降解等。本文对OS介导HM发病机制的研究进行综述,以期推进HM发病机制与防治的深入研究。
Abstract:
Myopia, which is the most common refractive error around the world, has been viewed as a major public health concern. In China, approximately 600 million patients suffered from myopia and over 80 million patients had high myopia (HM). At present, the myopia has the youth oriented tendency and become more advanced. HM fundus lesions, especially macular degeneration, are found to be the main cause of blindness in East Asian countries. However, the specific pathogenesis of HM is still unclear so far. More and more studies have shown that its occurrence is closely related to many factors, such as genetic inheritance, environmental factors, molecular biology and scleral biomechanical changes. Among those factors, oxidative stress (OS) plays an important role due to its accumulation in the retina and choroid, which can produce the reactive oxygen species and reactive nitrogen species and induce scleral cell apoptosis and extracellular matrix degradation through various mechanisms. Thus, this article reviews the research on the pathogenesis of OS-mediated HM by reviewing relevant literature at home and abroad to promote the in-depth study of the pathogenesis and prevention of HM.

参考文献/References:

[1] JONES D,LUENSMANN D.The prevalence and impact of high myopia[J].Eye Contact Lens,2012,38(3):188-196.
[2] HOLDEN B A,FRICKE T R,WILSON D A,JONG M,NAIDOO K S,SANKARIDURG P,et al.Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050[J].Ophthalmology,2016,123(5):1036-1042.
[3] IWASE A,ARAIE M,TOMIDOKORO A,YAMAMOTO T,SHIMIZU H,KITAZAWA Y,et al.Prevalence and causes of low vision and blindness in a Japanese adult population:The Tajimi study[J].Ophthalmology,2006,113(8):1354-1362.
[4] 王雯婕,陈剑,王园园,刘小勇,张晓玲,曲艺欣,等.氧化应激与眼表疾病关系的研究进展[J].眼科新进展,2014,34(6):585-588.
WANG W J,CHEN J,WANG Y Y,LIU X Y,ZHANG X L,QU Y X,et al.Research progress on relationship between oxidative stress and ocular surface disease[J].Rec Adv Ophthalmol,2014,34(6):585-588.
[5] CHIANG S C,MEAGHER M,KASSOUF N,HAFEZPARAST M,MCKINNON P J,HAYWOOD R,et al.Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical-induced DNA damage[J].Sci Adv,2017,3(4):e1602506.
[6] 马成霞,徐蕾,闫磐石.分子生物学研究[M]//张金嵩.高度近视.北京:人民卫生出版社,2013:90-92.
MA C X,XU L,YAN P S.Molecular biology research[M]//ZHANG J S.High myopia.Beijing:People’s Medical Publishing House,2013:90-92.
[7] 赵小云,黄悦,赵少贞,张未娟,张文静.先天性近视豚鼠眼球生物学参数及巩膜病理改变[J].新乡医学院学报,2017,34(6):465-468.
ZHAO X Y,HUANG Y,ZHAO S Z,ZHANG W J,ZHANG W J.Biological parameters and the sclera pathological changes in congenital myopia guinea pigs[J].J Xinxiang Med Univ,2017,34(6):465-468.
[8] ELEUTHERIO E,BRASIL A A,FRANA M B,DE ALMEIDA D S G,RONA G B,MAGALHES R S S.Oxidative stress and aging:Learning from yeast lessons[J].Fungal Biol,2018,122(6):514-525.
[9] KRUK J,KUBASIK-KLADNA K,ABOUL-ENEIN H Y.The role oxidative stress in the pathogenesis of eye diseases:Current status and a dual role of physical activity[J].Mini Rev Med Chem,2015,16(3):241-257.
[10] DI M S,REED T T,VENDITTI P,VICTOR V M.Role of ROS and RNS sources in physiological and pathological conditions[J].Oxid Med Cell Longev,2016,2016:1245049.
[11] MüNZEL T,DAIBER A.Environmental stressors and their impact on health and disease with focus on oxidative stress[J].Antioxid Redox Signal,2018,28(9):735-740.
[12] PIZZINO G,IRRERA N,CUCINOTTA M,PALLIO G,MANNINO F,ARCORACI V,et al.Oxidative stress:harms and benefits for human health[J].Oxid Med Cell Longev,2017,2017:8416763.
[13] MASHHADI N S,GHIASVAND R,ASKARI G,HARIRI M,DARVISHI L,MOFID M R.Anti-oxidative and anti-inflammatory effects of ginger in health and physical activity:Review of current evidence[J].Int J Prev Med,2013,4(Sup1):S36-S42.
[14] LEE J B,SHIN Y M,KIM W S,KIM S Y,SUNG H J.ROS-responsive biomaterial design for medical applications[J].Adv Exp Med Biol,2018,1064:237-251.
[15] PESHAVARIYA H.NADPH oxidase-derived ROS signaling and therapeutic opportunities[J].Curr Pharm Des,2015,21(41):5931-5932.
[16] MORTADZA S A S,WANG L,LI D L,JIANG L H.TRPM2 channel-mediated ROS-sensitive Ca2+ signaling mechanisms in immune cells[J].Front Immunol,2015,6:407.
[17] SHEN C,TURNEY T W,PIVA T J,FELTIS B N,WRIGHT P F.Comparison of UVA-induced ROS and sunscreen nanoparticle-generated ROS in human immune cells[J].Photochem Photobiol Sci,2014,13(5):781-788.
[18] SCIAL F,FERNNDEZ-AYALA D J,SANZ A.Role of mitochondrial reverse electron transport in ROS signaling:Potential roles in health and disease[J].Front Physiol,2017,8:428.
[19] AMBUDKAR I S,MUALLEM S.ROS in Ca2+ signaling and disease-part 2[J].Cell Calcium,2016,60(3):153-154.
[20] HINCHY E C,GRUSZCZYK A V,WILLOWS R,NAVARATNAM N,HALL A R,BATES G,et al.Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly[J].J Biol Chem,2018,293(44):17208-17217.
[21] STANKOVIC-VALENTIN N,MELCHIOR F.Control of SUMO and ubiquitin by ROS:Signaling and disease implications[J].Mol Aspects Med,2018,63:3-17.
[22] RAMACHANDRAN J,PELUFFO R D.Threshold levels of extracellular I-arginine that trigger NOS-mediated ROS/RNS production in cardiac ventricular myocytes[J].Am J Physiol Cell Physiol,2017,312(2):C144-C154.
[23] BERKA V,LIU W,WU G,TSAI A L.Comparison of oxygen-induced radical intermediates in iNOS oxygenase domain with those from nNOS and eNOS[J].J Inorg Biochem,2014,139:93-105.
[24] GUERRA B A,OTTON R.Impact of the carotenoid astaxanthin on phagocytic capacity and ROS/RNS production of human neutrophils treated with free fatty acids and high glucose[J].Int Immunopharmacol,2011,11(12):2220-2226.
[25] FLOH L.The fairytale of the GSSG/GSH redox potential[J].Biochim Biophys Acta,2013,1830(5):3139-3142.
[26] QIN F,PAN X,YANG J,LI S,SHAO L,ZHANG X,et al.Dietary iodine affected the GSH-PX to regulate the thyroid hormones in thyroid gland of rex rabbits[J].Biol Trace Elem Res,2018,181(2):251-257.
[27] JANKOVIC A,FERRERI C,FILIPOVIC M,IVANOVIC-BURMAZOVIC I,STANCIC A,OTASEVIC V,et al.Targeting the superoxide/nitric oxide ratio by L-arginine and SOD mimic in diabetic rat skin[J].Free Radic Res,2016,50(Sup1):S51-S63.
[28] GANGWAR A,PAUL S,AHMAD Y,BHARGAVA K.Competing trends of ROS and RNS-mediated protein modifications during hypoxia as an alternate mechanism of NO benefits[J].Biochimie,2018,148:127-138.
[29] TSUBOTA K.Anti-aging approach for ocular disorders:From dry eye to retinitis pigmentosa and myopia[J].Nippon Ganka Gakkai Zasshi,2017,121(3):232-248.
[30] YANG B,XU Y,HU Y,LUO Y,LU X,TSUI C K,et al.Madecassic acid protects against hypoxia-induced oxidative stress in retinal microvascular endothelial cells via ROS-mediated endoplasmic reticulum stress[J].Biomed Pharmacother,2016,84:845-852.
[31] MOLDOGAZIEVA N T,MOKHOSOEV I M,FELDMAN N B,LUTSENKO S V.ROS and RNS signalling:Adaptive redox switches through oxidative/nitrosative protein modifications[J].Free Radic Res,2018,52(5):507-543.
[32] MAO J,LIU S,WEN D,TAN X,FU C.Basic fibroblast growth factor suppresses retinal neuronal apoptosis in form-deprivation myopia in chicks[J].Curr Eye Res,2006,31(11):983-987.
[33] YANG Y,WU Z Z,CHENG Y L,LIN W,QU C.Resveratrol protects against oxidative damage of retinal pigment epithelium cells by modulating SOD/MDA activity and activating Bcl-2 expression[J].Eur Rev Med Pharmacol Sci,2019,23(1):378-388.
[34] DHINGRA A,TUMMALA S R,LYUBARSKY A,VARDI N.PDE9A is expressed in the inner retina and contributes to the normal shape of the photopic ERG waveform[J].Front Mol Neurosci,2014,7:60.
[35] FELDKAEMPER M,SCHAEFFEL F.An updated view on the role of dopamine in myopia[J].Exp Eye Res,2013,114:106-119.
[36] WU H,CHEN W,ZHAO F,ZHOU Q,REINACH P S,DENG L,et al.Scleral hypoxia is a target for myopia control[J].Proc Natl Acad Sci U S A,2018,115(30):E7091-E7100.
[37] CARR B J,STELL W K.Nitric Oxide (NO) mediates the inhibition of form-deprivation myopia by atropine in chicks[J].Sci Rep,2016,6(1):9.
[38] WANG Q M,ZHAO X Y,WANG Z,YANG X B.Expression of nitric oxide synthase in the retina of monocular deprivation amblyopia rats[J].Eur Rev Med Pharmacol Sci,2018,22(7):1879-1883.
[39] JACOBY J,NATH A,JESSEN Z F,SCHWARTZ G W.A self-regulating gap junction network of amacrine cells controls nitric oxide release in the retina[J].Neuron,2018,100(5):1149-1162.
[40] MAO J F,LIU S Z,QIN W J,XIANG Q.Modulation of TGFβ2 and dopamine by PKC in retinal Müller cells of guinea pig myopic eye[J].Int J Ophthalmol,2011,4(4):357-360.
[41] CHU K O,CHAN K P,YANG Y P,QIN Y J,LI W Y,CHAN S O,et al.Effects of EGCG content in green tea extract on pharmacokinetics,oxidative status and expression of inflammatory and apoptotic genes in the rat ocular tissues[J].J Nutr Biochem,2015,26(11):1357-1367.
[42] LIU T X,WANG Z.Biomechanics of sclera crosslinked using genipin in rabbit[J].Int J Ophthalmol,2017,10(3):355-360.
[43] LEE M,REY K,BESLER K,WANG C,CHOY J.Immunobiology of nitric oxide and regulation of inducible nitric oxide synthase[J].Results Probl Cell Differ,2017,62:181-207.
[44] WU J,LIU Q,YANG X,YANG H,WANG X M,ZENG J W.Changes of nitric oxide synthase and cyclic guanosine mono-phosphate in form deprivation myopia in guinea pigs[J].Chin Med J (Engl),2007,120(24):2238-2244.
[45] PISOSCHI A M,POP A.The role of antioxidants in the chemistry of oxidative stress:A review[J].Eur J Med Chem,2015,97:55-74.
[46] MA Q.Advances in mechanisms of anti-oxidation[J].Discov Med,2014,17(93):121-130.
[47] LAGRZE W A,SCHAEFFEL F.Preventing myopia[J].Dtsch Arztebl Int,2017,114(35-36):575-580.
[48] COOPER J,TKATCHENKO A V.A review of current concepts of the etiology and treatment of myopia[J].Eye Contact Lens,2018,44(4):231-247.
[49] RONG S,WANG C,HAN B,FENG P,LAN W,GAO Z,et al.Iontophoresis-assisted accelerated riboflavin/ultraviolet a scleral cross-linking:A potential treatment for pathologic myopia[J].Exp Eye Res,2017,162:37-47.
[50] 周薇薇,邓宏伟,廖灿鹏,谢辉庭.口服递法明片对控制儿童近视的短期研究[J].国际眼科杂志,2016,16(3):575-578.
ZHOU W W,DENG H W,LIAO C P,XIE H T.Short-term study of orally administered difrarel to control myopia in children[J].Int Eye Sci,2016,16(3):575-578.

相似文献/References:

[1]陈放 徐珊 吕伟红 程宏 张洪泉.糖尿病大鼠视网膜的氧化应激损伤及葛根素对其的干预作用[J].眼科新进展,2012,32(1):000.
[2]解正高 陈放 庄朝荣 王健 朱俊 季河清 王雅坤.银杏叶提取物增强大鼠视网膜光损伤模型抗氧化应激能力[J].眼科新进展,2012,32(1):000.
[3]杨鑫 张凤妍 方梦园 张金嵩 彭广华.PUMA 介导氧化应激诱导的人晶状体上皮细胞凋亡[J].眼科新进展,2012,32(5):000.
[4]田磊 万文萃 郭辉 王天云 卢杰 夏昆 金学民 胡正茂.高度近视家系 ZNF644基因突变筛查[J].眼科新进展,2012,32(5):000.
[5]杜玮 刘子扬 周艳艳 雒雷鸣.糖尿病视网膜病变与血清胆红素水平的关系[J].眼科新进展,2012,32(5):000.
[6]计垣.近视的分子遗传学研究进展[J].眼科新进展,2012,32(6):000.
[7]刘彩娟 谭少健 李霞 唐东永 黄宝宇 梁皓.有晶状体眼虹膜固定型人工晶状体植入术后远期视觉质量[J].眼科新进展,2012,32(11):000.
[8]徐静 李雪.高度近视致病基因的研究新进展[J].眼科新进展,2012,32(11):000.
[9]喻小龙 谭钢 刘二华 周寿红.罗格列酮对高糖诱导视网膜神经节细胞损伤的保护作用[J].眼科新进展,2013,33(2):000.
[10]王观峰 李文立 邹秀兰 邹玉平 皮荣标 姚敏.硫辛酸烟酸二联体对丙烯醛损伤ARPE-19细胞的保护作用[J].眼科新进展,2013,33(2):000.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(编号:81574029)
更新日期/Last Update: 2020-04-05