[1]彭敏敏,陈树春,高渊,等.肠道微生物组学与糖尿病视网膜病变研究进展[J].眼科新进展,2020,40(2):188-191.[doi:10.13389/j.cnki.rao.2020.0045]
 PENG Minmin,CHEN Shuchun,GAO Yuan,et al.Recent advances in relationship of intestinal flora with diabetic retinopathy[J].Recent Advances in Ophthalmology,2020,40(2):188-191.[doi:10.13389/j.cnki.rao.2020.0045]
点击复制

肠道微生物组学与糖尿病视网膜病变研究进展/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
40卷
期数:
2020年2期
页码:
188-191
栏目:
文献综述
出版日期:
2020-02-05

文章信息/Info

Title:
Recent advances in relationship of intestinal flora with diabetic retinopathy
作者:
彭敏敏陈树春高渊王孜
050051 河北省石家庄市,河北省人民医院内分泌科;075000 河北省张家口市,河北北方学院研究生院
Author(s):
PENG MinminCHEN ShuchunGAO YuanWANG Zi
Department of Endocrinology,Hebei Provincial People’s Hospital,Shijiazhuang 050051,Hebei Province,China;Department of Postgraduate of Hebei North University,Zhangjiakou 075000,Hebei Province,China
关键词:
糖尿病视网膜病变肠道微生物组学菌群失调
Keywords:
diabetic retinopathyintestinal floradysbacteriosis
分类号:
R774.1
DOI:
10.13389/j.cnki.rao.2020.0045
文献标志码:
A
摘要:
近年来,很多研究发现微生物与眼部疾病之间的关系,并提出“肠-视网膜轴”的概念,肠道微生物组学通过影响血液循环中脂多糖、短链脂肪酸、胆汁酸、三甲氧胺的水平及色氨酸的代谢,导致胰岛素抵抗、慢性炎症的发生、免疫调节的失衡等,从而参与糖尿病视网膜病变的发生发展。临床上对糖尿病视网膜病变治疗没有特效药物,通过调节肠道微生物组学的微环境为糖尿病视网膜病变的治疗开辟了新方向。
Abstract:
In recent years,many studies have found the relationship between microorganisms and eye diseases and put forward the concept of “gut-retinal axis”.Gut flora can lead to insulin resistance,the occurrence of chronic inflammation and imbalance of immune by influencing the levels of fat polysaccharide,short-chain fatty acids,bile acid and trimethylamine-n-oxide,and metabolism of tryptophan in blood circulation.In this way,it participates in the development of diabetic retinopathy.There are no specific drugs for the treatment of diabetic retinopathy in clinical practice,but it opens up a new direction for the treatment of diabetic retinopathy by regulating the microenvironment of intestinal flora.

参考文献/References:

[1] BENOIT S R,SWENOR B,GEISS L S,GREGG E W,SAADDINE J B.Eye care utilization among insured people with diabetes in the U.S.2010-2014[J].Diabetes Care,2019,42(3):427-433.
[2] YAU J W,ROGERS S L,KAWASAKI R,LAMOUREUX E L,KOWALSKI J W,BEK T,et al.Global prevalence and major risk factors of diabetic retinopathy[J].Diabetes Care,2012,35(3):556-564.
[3] CAESAR R.Pharmacologic and nonpharmacologic therapies for the Gut Microbiota in Type 2 Diabetes[J].Can J Diabetes,2019,43(3):224-231.
[4] ROWAN S,TAYLOR A.The role of microbiota in retinal disease[J].Adv Exp Med Biol,2018,1074:429-435.
[5] NAPOLITANO A,MILLER S,NICHOLLS A W,BAKER D,VANHOM S,THOMAS E,et al.Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus[J].PLoS One,2014,9(7):e100778.
[6] BELI E,YAN Y,MOLDOVAN L,VIEIRA C P,GAO R,DUAN Y,et al.Restructuring of the Gut microbiome by intermittent fasting prevents retinopathy and prolongs survival in db/db mice[J].Diabetes,2018,67(9):1867-1879.
[7] HANSEN M,SCHELTEMA M J,SONNE D P,HANSEN J S,SPERLING M,REHFEID J F,et al.Effect of chenodeoxycholic acid and the bile acid sequestrant colesevelam on glucagon-like peptide-1 secretion[J].Diabetes Obes Metab,2016,18(6):571-580.
[8] OUYANG H,MEI X,ZHANG T,LU B,JI L.Ursodeoxycholic acid ameliorates diabetic retinopathy via reducing retinal inflammation and reversing the breakdown of blood-retinal barrier[J].Eur J Pharmacol,2018,840:20-27.
[9] CHUNG Y R,CHOI J A,KOH J Y,YOON Y H.Ursodeoxycholic acid attenuates endoplasmic reticulum stress-related retinal pericyte loss in streptozotocin-induced diabetic mice[J].J Diabetes Res,2017,2017:1763292.
[10] DONG N,XU B,CHU L,TANG X.Study of 27 aqueous humor cytokines in type 2 diabetic patients with or without macular edema[J].PLoS One,2015,10(4):e0125329.
[11] SAYED K M,MAHMOUD A A.Heat shock protein-70 and hypoxia inducible factor-1alpha in type 2 diabetes mellitus patients complicated with retinopathy[J].Acta Ophthalmol,2016,94(5):e361-366.
[12] SINGH V,YEOH B S,VIJAY-KUMAR M.Gut microbiome as a novel cardiovascular therapeutic target[J].Curr Opin Pharmacol,2016,27:8-12.
[13] NOWINSKI A,UFNAL M.Trimethylamine N-oxide:A harmful,protective or diagnostic marker in lifestyle diseases?[J].Nutrition,2018,46:7-12.
[14] LOUKOVAARA S,PIIPPO N,KINNUNEN K,HYTTI M,KAARNIRANTA K,KAUPPIENE A.NLRP3 inflammasome activation is associated with proliferative diabetic retinopathy[J].Acta Ophthalmol,2017,95(8):803-808.
[15] CHEN H,ZHANG X,LIAO N,MI L,PENG Y,LIU B,et al.Enhanced Expression of NLRP3 Inflammasome-Related Inflammation in Diabetic Retinopathy[J].Invest Ophthalmol Vis Sci,2018,59(2):978-985.
[16] BOINI K M,HUSSAIN T,LI P L,KOKA S.Trimethylamine-N-Oxide Instigates NLRP3 Inflammasome Activation and Endothelial Dysfunction[J].Cell Physiol Biochem,2017,44(1):152-162.
[17] LIU Q,ZHANG F,ZHANG X,CHENG R,MA J X,YI J,et al.Fenofibrate ameliorates diabetic retinopathy by modulating Nrf2 signaling and NLRP3 inflammasome activation[J].Mol Cell Biochem,2018,445(1-2):105-115.
[18] WANG Y,TAO J,YAO Y.Prostaglandin E2 Activates NLRP3 Inflammasome in Endothelial Cells to Promote Diabetic Retinopathy[J].Horm Metab Res,2018,50(9):704-710.
[19] CHEN W,ZHAO M,ZHAO S,LU Q,NI L,ZOU C,et al.Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy:a novel inhibitory effect of minocycline[J].Inflamm Res,2017,66(2):157-166.
[20] GONGCALVES A,LIN C M,MUTHUSAMY A,FONTES-RIBEIRO C,AMBROSIO A F,ABCOUWER S F,et al.Protective effect of a GLP-1 analog on ischemia-reperfusion induced blood-retinal barrier breakdown and inflammation[J].Invest Ophthalmol Vis Sci,2016,57(6):2584-2592.
[21] LIN W J,MA X F,HAO M,ZHOU H R,YU X Y,SHAO N,et al.Liraglutide attenuates the migration of retinal pericytes induced by advanced glycation end products[J].Peptides,2018,105:7-13.
[22] ZHENG L,KELLY C J,BATTISTA K D,SCHAEFER R,LANIS J M,ALEXEEV E E,et al.microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2[J].J Immunol,2017,199(8):2976-2984.
[23] LUU M,PAUTZ S,KOHL V,SINGH R,ROMERO R,LUCAS S,et al.The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes[J].Nat Commun,2019,10(1):760.
[24] WANG Y,FAN L,MENG X,JIANG F,CHEN Q,ZHANG Z,et al.Transplantation of IL-10-transfected endothelial progenitor cells improves retinal vascular repair via suppressing inflammation in diabetic rats[J].Graefes Arch Clin Exp Ophthalmol,2016,254(10):1957-1965.
[25] LAURANS L,VENTECLEF N,HADDAD Y,CHAJADINE M,ALZAIDl F,METGHALCHI S,et al.Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health[J].Nat Med,2018.24(8):1113-1120.
[26] MUNIPALLY P K,AGRAHARM S G,VALAVALA V K,GUNDAE S,TURLAPATI N R.Evaluation of indoleamine 2,3-dioxygenase expression and kynurenine pathway metabolites levels in serum samples of diabetic retinopathy patients[J].Arch Physiol Biochem,2011,117(5):254-258.
[27] REJDAK R,JUNEMANN A,GRIED P,THALER S,SCHUET-TAUF F,CHORAGIEWICZ T,et al.Kynurenic acid and kynurenine aminotransferases in retinal aging and neurodegeneration[J].Pharmacol Rep,2011,63(6):1324-1334.
[28] NAHOMI R B,SAMPATHKUMAR S,MYERS A M,ELGHAZI L,SMITH D G,TANG J,et al.The Absence of Indoleamine 2,3-Dioxygenase Inhibits Retinal Capillary Degeneration in Diabetic Mice[J].Invest Ophthalmol Vis Sci,2018,59(5):2042-2053.
[29] QU L,REN J,HUANG L,PANG B,LIU X,LI B,et al.Antidiabetic effects of lactobacillus casei fermented yogurt through reshaping gut microbiota structure in type 2 diabetic rats[J].J Agric Food Chem,2018,66(48):12696-12705.
[30] BAGAROLLI R A,TOBAR N,OLIVEIRA A G,ARAUJO T G,CARVALHO B M,ROCHA G Z,et al.Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice[J].J Nutr Biochem,2017,50:16-25.
[31] ZHANG W Q,ZHAO T T,GUI D K,GAO C L,GU J L,GAN W J,et al.Sodium butyrate improves liver glycogen metabolism in type 2 diabetes mellitus[J].J Agric Food Chem,2019,67(27):7694-7705.
[32] LIU Q,LI H,YANG J,NIU X,ZHAO C,ZHAO L,et al.Valproic acid attenuates inflammation of optic nerve and apoptosis of retinal ganglion cells in a rat model of optic neuritis[J].Biomed Pharmacother,2017,96:1363-1370.
[33] AMIN A M,WHARTON H,CLARKE M,SYED A,DODSON P,TAHRANI A.The impact of bariatric surgery on retinopathy in patients with type 2 diabetes:a retrospective cohort study[J].Surg Obes Relat Dis,2016,12(3):606-612.
[34] ZHANG L,LU L,ZHONG X,YUE Y,HONG Y,LI Y,et al.Metformin reduced NLRP3 inflammasome activity in Ox-LDL stimulated macrophages through adenosine monophosphate activated protein kinase and protein phosphatase 2A[J].Eur J Pharmacol,2019,852:99-106.
[35] LI Y,RYU C,MUNIE M,NOORULLA S,RANA S,EDWARDS P,et al.Association of metformin treatment with reduced severity of diabetic retinopathy in type 2 diabetic patients[J].J Diabetes Res,2018,2018:2801450.
[36] MALESKIC S,KUSTURICA J,GUSIC E,RAKANOVIC-TODIC M,SECIC D,BUMAZOVIC-RISTIC L,et al.Metformin use associated with protective effects for ocular complications in patients with type 2 diabetes-observational study[J].Acta Med Acad,2017,46(2):116-123.

相似文献/References:

[1]杜玮 刘子扬 周艳艳 雒雷鸣.糖尿病视网膜病变与血清胆红素水平的关系[J].眼科新进展,2012,32(5):000.
[2]范松涛 卢建民.阿司匹林与糖尿病患者玻璃体出血以及玻璃体切割术疗效的相关性研究[J].眼科新进展,2012,32(11):000.
[3]李艳 李筱荣 袁佳琴 潘斌.糖尿病大鼠视网膜中VEGF、PEDF的表达与血-视网膜屏障损伤[J].眼科新进展,2013,33(1):000.
[4]李朝晖 崔治华 胡晓英 孟丽珠 张敬维.糖尿病视网膜病变激光面积与疗效的分析[J].眼科新进展,2013,33(2):000.
[5]冯冬梅 朱鸿 施彩虹.CXC趋化因子及其受体在糖尿病视网膜病变中的作用[J].眼科新进展,2013,33(6):000.
[6]牛淑玲.糖尿病视网膜病变患者HbAlc、FPG与血小板参数的变化及危险因素分析[J].眼科新进展,2013,33(7):000.
[7]毕春潮 王睿 王建洲 雷春灵 董晓娟 王小莉 薛晓辉.Ad-PEDF对糖尿病视网膜病变大鼠视网膜新生血管的抑制作用[J].眼科新进展,2013,33(8):000.
[8]杨萍 孙书明 李晓鹏.辛伐他汀对糖尿病视网膜病变和炎症因子的影响[J].眼科新进展,2013,33(8):000.
[9]罗文婷 孙大卫.血管黏附蛋白-1在眼科疾病中的研究进展[J].眼科新进展,2013,33(8):000.
[10]李小璐 马雅玲.糖尿病视网膜病变大鼠视网膜VEGF和PEDF的动态表达[J].眼科新进展,2013,33(9):000.

备注/Memo

备注/Memo:
N/A
更新日期/Last Update: 2020-02-05