[1]彭昶璠,徐路星,罗世男,等.转化生长因子-β(TGF-β)空间动态分布的角膜基质创伤修复体外三维培养体系的构建[J].眼科新进展,2019,39(4):311-315.[doi:10.13389/j.cnki.rao.2019.0070]
 PENG Chang-Fan,XU Lu-Xing,LUO Shi-Nan,et al.Establishment of a three-dimensional culture system for corneal stromal wound healing in vitro with dynamic spatial distribution of TGF-β[J].Recent Advances in Ophthalmology,2019,39(4):311-315.[doi:10.13389/j.cnki.rao.2019.0070]
点击复制

转化生长因子-β(TGF-β)空间动态分布的角膜基质创伤修复体外三维培养体系的构建/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
39卷
期数:
2019年4期
页码:
311-315
栏目:
实验研究
出版日期:
2019-04-05

文章信息/Info

Title:
Establishment of a three-dimensional culture system for corneal stromal wound healing in vitro with dynamic spatial distribution of TGF-β
作者:
彭昶璠徐路星罗世男王霜宁袁检宝李霞
530021 广西壮族自治区南宁市,广西医科大学第一附属医院眼科
Author(s):
PENG Chang-FanXU Lu-XingLUO Shi-NanWANG Shuang-NingYUAN Jian-BaoLI Xia
Department of Ophthalmology,the First Affiliated Hospital of Guangxi Medical University,Nanning 530021,Guangxi Zhuang Autonomous Region,China
关键词:
角膜基质细胞转化生长因子-β三维培养创伤修复瘢痕化
Keywords:
corneal stromal cellstransforming growth factor-βthree-dimensional culturewound healingscarring
分类号:
R772
DOI:
10.13389/j.cnki.rao.2019.0070
文献标志码:
A
摘要:
目的 研究构建模拟角膜基质创伤修复过程中转化生长因子-β(transforming growth factor-β,TGF-β)空间动态分布的体外三维培养系统。方法 从新鲜牛眼中分离角膜基质细胞,用含体积分数10%胎牛血清(fetal bovine serum,FBS)的DMEM/F12培养基进行培养,而后构建Pellet体外三维培养模型进行培养。将Pellet分为有透析袋组和无透析袋组,置入Transwell小室系统上下室中培养48 h后换液,上室为0.50 μg·L-1TGF-β1+0.25 μg·L-1TGF-β2+体积分数10%FBS,下室为体积分数10%FBS,分别于培养后72 h观察Pellet培养模型的形态变化并采用Real-time PCR法分别检测2组上下室Pellet中α-平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)、纤维连接蛋白(fibronectin,FN)、Ⅰ型胶原(collagen Ⅰ,Col Ⅰ)和Col Ⅲ mRNA相对表达量。结果 培养后72 h Pellet均呈团状生长。有透析袋组Transwell小室系统上、下室α-SMA mRNA表达量分别为1.595±0.025、1.148±0.009,FN mRNA表达量分别为1.090±0.011、0.844±0.015,Col Ⅰ mRNA表达量分别为1.445±0.035、1.165±0.008,Col Ⅲ mRNA表达量分别为1.726±0.031、1.314±0.020,Col Ⅲ/Col Ⅰ比值分别为1.126±0.019、0.957±0.013,上下室各项指标比较差异均有统计学意义(均为P=0.000)。无透析袋组Transwell小室系统上、下室α-SMA mRNA表达量分别为1.363±0.018、1.360±0.002,FN mRNA表达量分别为0.946±0.017、0.952±0.012,Col Ⅰ mRNA表达量分别为1.261±0.011、1.258±0.029,Col Ⅲ mRNA表达量分别为1.459±0.027、1.462±0.033,Col Ⅲ/Col Ⅰ比值分别为1.157±0.029、1.163±0.090,上下室各项指标比较,差异均无统计学意义(均为P>0.05)。无透析袋组上室细胞中α-SMA、FN、Col Ⅰ和Col Ⅲ mRNA的相对表达量与有透析袋组上室、有透析袋组下室比较,差异均有统计学意义(均为P<0.05)。无透析袋组下室细胞中α-SMA、FN、Col Ⅰ和Col Ⅲ mRNA的相对表达量与有透析袋组上室、有透析袋组下室比较,差异均有统计学意义(均为P<0.05)。结论 Transwell小室系统与透析袋相结合可构建模拟TGF-β空间动态分布的体外三维培养系统。
Abstract:
Objective To establish a three-dimensional culture system simulating the spatial dynamic distribution of transforming growth factor-β (TGF- β) during corneal matrix healing in vitro.Methods Corneal stromal cells were isolated from fresh bovine eyes and cultured in DMEM/F12 culture medium containing volume fraction of 10%FBS.Then a three-dimensional culture model of Pellet was established for culture.Pellets were divided into dialysis tubes group and non-dialysis tubes group.After 48 h of culture in the upper and lower compartments of Transwell chamber system,the fluid in the upper chamber was changed to 0.50 μg·L-1 TGF-β1+0.25 μg·L-1 TGF-β2+volume fraction of 10% FBS,and volume fraction of 10%FBS in the lower chambers.The morphological changes of Pellets’ culture model were observed 72 h after culture.Real-time PCR was used to detect the relative expressions of α-smooth muscle actin (α-SMA),fibronectin (FN),type Ⅰ collagen (Col Ⅰ) and type Ⅲ collagen (Col Ⅲ) mRNA in each group.Results After 72 hours of culture,Pellets grew into clusters.In the upper and lower chambers of the dialysis tubes group,the expression level of α-SMA mRNA was 1.595±0.025 and 1.148±0.009,respectively;FN mRNA was 1.090±0.011 and 0.844±0.015,respectively;Col I mRNA was 1.445±0.035 and 1.165±0.008,respectively;Col Ⅲ mRNA was 1.726±0.031 and 1.314±0.020,respectively;and the ratio of Col Ⅲ/Col Ⅰ was 1.126±0.019 and 0.957±0.013,respectively.The differences between the upper and lower chambers were statistically significant (all P=0.000).In the upper and lower chambers of the non-dialysis tubes group,the expression level of α-SMA mRNA was 1.363±0.018 and 1.360±0.002,respectively;FN mRNA was 0.946±0.017 and 0.952±0.012,respectively;Col Ⅰ mRNA expression was 1.261±0.011 and 1.258±0.029,respectively;Col Ⅲ mRNA was 1.459±0.027 and 1.462±0.033,respectively;and the ratio of Col Ⅲ/Col Ⅰ was 1.157±0.029 and 1.163±0.090,respectively.There was no significant statistical difference between upper and lower chambers of non-dialysis tubes group (all P>0.05).The relative expression levels of α-SMA,FN,Col Ⅰ and Col Ⅲ mRNA in the upper chamber of the non-dialysis tubes group were significantly different from those of the upper and lower chambers of the dialysis tubes group (all P<0.05).The relative expressions of α-SMA,FN,Col Ⅰ and Col Ⅲ in the lower chamber of the non-dialysis tubes group were also significantly different from those of the upper and lower chamber of the dialysis tubes group (all P<0.05).Conclusion The combination of the Transwell chamber system and dialysis tubes is able to establish a three-dimensional culture system which can simulate the spatial dynamic distribution of TGF-β in vitro.

参考文献/References:

[1] SRIRAM S,TRAN J A,GUO X,HUTCHEON A K,LEI H,KAZLAUSKAS A,et al.PDGFRα is a key regulator of T1 and T3’s differential effect on SMA expression in human corneal fibroblasts[J].Invest Ophthalmol Vis Sci,2017,58(2):1179-1186.
[2] JIN H,LUO S N,FAN Z X,LI J,ZHOU W W,LI X.Establishment of a three-dimensional corneal stroma extracellular matrix fibrosis model induced by transforming growth factor-β1 in vitro[J].Chin J Ophthalmol,2015,33(5):406-411.
靳荷,罗世男,范梓晰,李杰,周卫为,李霞.转化生长因子-β1介导的角膜基质细胞外基质纤维化体外三维培养模型的构建[J].中华实验眼科杂志,2015,33(5):406-411.
[3] ZHANG L,LUO S N,YUAN J B,ZHOU W W,LI X.Effects of low-dose of TGF-β1 on maintaining bovine corneal stromal cell growth and retarding extracellular matrix fibrosis in a three-dimensional culture model[J].Chin J Ophthalmol,2017,35(5):396-403.
张露,罗世男,袁检宝,周卫为,李霞.低剂量TGF-β1维持三维培养模型中牛角膜基质细胞生长和缓解细胞外基质纤维化的作用[J].中华实验眼科杂志,2017,35(5):396-403.
[4] WU J,DU Y,MANN M M,YANG E,FUNDERBURGH J L,WAGNER W R.Bioengineering organized,multilamellar human corneal stromal tissue by growth factor supplementation on highly aligned synthetic substrates[J].Tissue Eng Part A,2013,19(17-18):2063-2075.
[5] STRAMER B M,ZIESKE J D,JUNG J C,AUSTIN J S,FINI M E.Molecular mechanisms controlling the fibrotic repair phenotype in cornea:implications for surgical outcomes[J].Invest Ophthalmol Vis Sci,2003,44(10):4237-4246.
[6] GUO X,HUTCHEON A E K,ZIESKE J D.Molecular insights on the effect of TGF-β1/-β3 in human corneal fibroblasts[J].Exp Eye Res,2016,146(2):233-241.
[7] LJUBIMOV A V,SAGHIZADEH M.Progress in corneal wound healing[J].Prog Retin Eye Res,2015,49(1):17-45.
[8] HUH M I L,CHANG Y,JUNG J C.Temporal and spatial distribution of TGF-beta isoforms and signaling intermediates in corneal regenerative wound repair[J].Histol Histopathol,2009,24(11):1405.
[9] FINI M E,STRAMER B M.How the cornea heals:cornea-specific repair mechanisms affecting surgical outcomes[J]?Cornea,2005,24(8 Suppl):S2-11.
[10] LICHTMAN M K,OTERO-VINAS M,FALANGA V.Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis[J].Wound Repair Regen,2016,24(2):215-222.
[11] LI X.Research progress of three-dimensional culture and corneal matrix tissue engineering[J].J Minimal Invas Med,2012,7(4):399-402.
李霞.三维培养与角膜基质组织工程学研究进展[J].微创医学,2012,7(4):399-402.
[12] LAKSHMAN N,PETROLL W M.Growth factor regulation of corneal keratocyte mechanical phenotypes in 3-D collagen matrices[J].Invest Ophthalmol Vis Sci,2012,53(3):1077-1086.
[13] KARAMICHOS D,HUTCHEON A E K,ZIESKE J D.Reversal of fibrosis by TGF-β3 in a 3D in vitro model[J].Exp Eye Res,2014,124(1):31-36.
[14] GUO X,HUTCHEON A E K,MELOTTI S A,ZIESKE J D,TRINKAUS-RANDALL V,RUBERTI J W.Morphologic characterization of organized extracellular matrix deposition by ascorbic acid stimulated human corneal fibroblasts[J].Invest Ophthalmol Vis Sci,2007,48(9):4050-4060.
[15] KARAMICHOS D,GUO X Q,HUTCHEON A E K,ZIESKE J D.Human corneal fibrosis:an in vitro model[J].Invest Ophthalmol Vis Sci,2010,51(3):1382.

相似文献/References:

[1]兰芬 杜之渝 黄正 吴宁玲.腺病毒与慢病毒载体转染离体兔角膜基质细胞的有效性对比研究[J].眼科新进展,2012,32(2):000.
[2]李晓霞 袁军 陈建苏.真核基因重组Sox2及其在小鼠角膜基质细胞中的表达[J].眼科新进展,2013,33(6):000.
[3]刘巍 邓爱军 刘建伟 刘艳 丁敏.β-葡聚糖对大鼠增生性玻璃体视网膜病变的作用及其机制研究[J].眼科新进展,2013,33(10):000.
[4]彭日波 余玲.TGF-β/Smad信号通路在青光眼中的研究进展[J].眼科新进展,2013,33(12):000.
[5]杜文文,张凤妍,杜珊珊,等.Rho/Rock信号转导通路中的关键因子RhoA、Rock I、p-LMC在后发性白内障动物模型中的表达[J].眼科新进展,2016,36(2):105.[doi:10.13389/j.cnki.rao.2016.0029]
 DU Wen-Wen,ZHANG Feng-Yan,DU Shan-Shan,et al.Expressions of key factors ( RhoA, Rock I, p-LMC) of Rho/Rock signaling pathway in animal model of posterior capsule opacification[J].Recent Advances in Ophthalmology,2016,36(4):105.[doi:10.13389/j.cnki.rao.2016.0029]
[6]韩治华,杨淑焕,郭卫民,等.TGF-β介导的Smad信号通路在增生型糖尿病视网膜病变中的作用和意义[J].眼科新进展,2016,36(10):957.[doi:10.13389/j.cnki.rao.2016.0256]
 HAN Zhi-Hua,YANG Shu-Huan,GUO Wei-Min,et al.Role and significance of TGF-β mediated Smad signaling pathways in proliferative diabetic retinopathy[J].Recent Advances in Ophthalmology,2016,36(4):957.[doi:10.13389/j.cnki.rao.2016.0256]
[7]张兰兰,刘琼,于健,等.转化生长因子-β(TGF-β)影响豚鼠巩膜成纤维细胞增殖和α-平滑肌肌动蛋白(α-SMA)表达的研究[J].眼科新进展,2016,36(11):1011.[doi:10.13389/j.cnki.rao.2016.0270]
 ZHANG Lan-Lan,LIU Qiong,YU Jian,et al.Effects of TGF-[3 on cellular proliferation and a-SMA expression in guinea pig scleral fibroblasts[J].Recent Advances in Ophthalmology,2016,36(4):1011.[doi:10.13389/j.cnki.rao.2016.0270]
[8]张露,李霞.TGF-β在角膜损伤修复中的时间和空间分布[J].眼科新进展,2017,37(2):184.[doi:10.13389/j.cnki.rao.2017.0048]
 ZHANG Lu,LI Xia.Temporal and spatial distribution of TGF-β in corneal wound healing[J].Recent Advances in Ophthalmology,2017,37(4):184.[doi:10.13389/j.cnki.rao.2017.0048]
[9]张利民,包秀丽.上皮间充质转化在增生性玻璃体视网膜病变发病机制中的潜在作用[J].眼科新进展,2018,38(7):692.[doi:10.13389/j.cnki.rao.2018.0163]
 ZHANG Li-Min,BAO Xiu-Li.Potential effect of epithelial mesenchymal transition in pathogenesis of proliferative vitreoretinopathy[J].Recent Advances in Ophthalmology,2018,38(4):692.[doi:10.13389/j.cnki.rao.2018.0163]
[10]张利民,包秀丽.Sprouty调控转化生长因子-β信号通路介导的上皮间充质转化抑制后囊膜混浊的研究进展[J].眼科新进展,2019,39(7):690.[doi:10.13389/j.cnki.rao.2019.0159]
 ZHANG Li-Min,BAO Xiu-Li.Research progress of Sprouty regulates transform growth factor-β signaling pathway mediated epithelial mesenchymal transition and inhibits posterior capsular opacification[J].Recent Advances in Ophthalmology,2019,39(4):690.[doi:10.13389/j.cnki.rao.2019.0159]
[11]靳荷,李霞.TGF-β在角膜瘢痕形成及无瘢痕愈合中的作用[J].眼科新进展,2014,34(11):1087.[doi:10.13389/j.cnki.rao.2014.0302]
 JIN He,LI Xia.Role of TGF-β in corneal stromal scarring and scar-free wound healing[J].Recent Advances in Ophthalmology,2014,34(4):1087.[doi:10.13389/j.cnki.rao.2014.0302]

备注/Memo

备注/Memo:
国家自然科学基金资助(编号:81360144、81060076);广西自然科学基金资助(编号:2017-GXNSFAA198250)
更新日期/Last Update: 2019-04-15