[1]余曦,田敏,何薇,等.叔丁基对苯二酚对糖尿病大鼠视网膜的保护作用及其机制研究[J].眼科新进展,2018,38(8):719-723.[doi:10.13389/j.cnki.rao.2018.0169]
 YU Xi,TIAN Min,HE Wei,et al.Protective effects of tert-butylhydroquinone on the retina of diabetic rats and its mechanisms[J].Recent Advances in Ophthalmology,2018,38(8):719-723.[doi:10.13389/j.cnki.rao.2018.0169]
点击复制

叔丁基对苯二酚对糖尿病大鼠视网膜的保护作用及其机制研究/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
38卷
期数:
2018年8期
页码:
719-723
栏目:
实验研究
出版日期:
2018-08-05

文章信息/Info

Title:
Protective effects of tert-butylhydroquinone on the retina of diabetic rats and its mechanisms
作者:
余曦田敏何薇胡萍吕红彬
646000 四川省泸州市,西南医科大学附属医院眼科
Author(s):
YU XiTIAN MinHE WeiHU PingLV Hong-Bin
Department of Ophthalmology,the Affiliated Hospital of Southwest Medical University,Luzhou 646000,Sichuan Province,China
关键词:
糖尿病视网膜病变叔丁基对苯二酚miRNAmiR-325-3pmiR-551b-3p
Keywords:
diabetic retinopathytert-butylhydroquinonemicrornamir-325-3pmir-551b-3p
分类号:
R774.1
DOI:
10.13389/j.cnki.rao.2018.0169
文献标志码:
A
摘要:
目的 探讨叔丁基对苯二酚(tert-Butylhydroquinone,tBHQ)对糖尿病大鼠视网膜的保护作用及其机制,为DR防治提供新靶点。方法 18只雄性SD大鼠随机分成3组:正常组、糖尿病组(高脂高糖饮食)和tBHQ干预组(高脂高糖饮食中加入质量分数1%tBHQ),后两组饮食干预4周后建立糖尿病大鼠模型,饮食干预3个月后处死各组大鼠。采集大鼠空腹血用于测定生化和胰岛素相关指标,HE染色观察大鼠视网膜各层组织变化,使用miRNA表达谱芯片测量大鼠视网膜差异性miRNA,实时定量PCR验证特定miRNA在3组大鼠视网膜的表达水平,分析差异性miRNA的相关通路。结果 tBHQ干预组[(15.073±7.079)mmol·L-1]较正常组[(7.635±1.421)mmol·L-1]空腹血糖升高(P<0.05),较糖尿病组[(22.331±1.824)mmol·L-1]降低(P<0.05)。tBHQ干预组[(47.961±15.256)μU·L-1]血清胰岛素较正常组[(78.090±20.974)μU·L-1]减少,而较糖尿病组[(17.533±3.959)μU·L-1]增多(均为P<0.01)。HE染色结果示,糖尿病组大鼠视网膜出现严重水肿,各层结构不清,tBHQ干预组视网膜改变相对轻微。与糖尿病组大鼠相比,tBHQ干预组视网膜中miR-325-3p(>2.0倍)和miR-551b-3p(>1.5倍)上调,miR-652-3p(>2.0倍)下调。实时定量PCR验证miR-325-3p和miR-551b-3p为差异性miRNA,靶基因预测分析示miR-325-3p可介导21条信号通路。结论 tBHQ可能通过miR-325-3p介导的信号通路对2型糖尿病大鼠视网膜起保护作用。
Abstract:
Objective To investigate the protective effect and mechanism of tert-butylhydroquinone (tBHQ) on the retina of diabetic rats and provide new targets for prevention of DR.Methods Totally 18 male SD rats were randomly divided into three groups:normal group,diabetic group (high-glucose-high-fat diet) and tBHQ intervention group (addition of mass fraction of 1% tBHQ to a high-glucose-high-fat diet).After dietary intervention for 4 weeks of the last two groups,diabetic rat models were established.Rats in each group were sacrificed after 3 months of dietary intervention.The rats were sacrificed to collect the fasting blood for measuring the biochemical and insulin-related indicators.HE staining was used to observe the pathological changes of retinal tissue.The miRNA expression profile microarray was used to measure the differential miRNAs of rat retinas.The expression levels of specific miRNAs in the three groups of rat retinas were verified by PCR.The relevant pathways of differential miRNAs were analyzed.Results The fasting blood glucose in the tBHQ intervention group [(15.073 ±7.079)mmol·L-1]was higher than that in the normal group[(7.635±1.421)mmol·L-1],which was lower than that in the diabetic group [(22.331±1.824)mmol·L-1] (both P<0.05).The serum insulin in the tBHQ intervention group [(47.961±15.256)μU·L-1] was lower than that in the normal group [(78.090±20.974)μU·L-1],but it was higher than that in the diabetic group[(17.533±3.959)μU·L-1] (both P<0.01).Severe retinal edema appeared in the retina of the diabetic group,and the structural layer was unclear based on HE staining.The pathological changes of the retina in the tBHQ intervention group were slight.Compared with diabetic rats,miR-325-3p and miR-551b-3p were up-regulated (>1.5-fold) and miR-652-3p was down-regulated (>2.0-fold) in the tBHQ group.MiR-325-3p and miR-551b-3p were identified as differential miRNAs after PCR verification.By combining the results of the microarray experiments,we found that 21 pathways might be subject to miR-325-3p regulation from tBHQ treatment.Conclusion tBHQ has protective effects on diabetic retina through miR-325-3p and its mediated signaling pathways.

参考文献/References:

[1] TING D S,CHEUNG G C,WONG T Y.Diabetic retinopathy:global prevalence,major risk factors,screening practices and public health challenges:a review[J].Clin Exp Ophthalmol,2016,44(4):260-277.
[2] XU W,LI F,XU Z,SUN B,CAO J,LIU Y.Tert-butylhydroquinone protects PC12 cells against ferrous sulfate-induced oxidative and inflammatory injury via the Nrf2/ARE pathway[J].Chem Biol Interact,2017,273(1):28-36.
[3] JIN X L,WANG K,LIU L,LIU H Y,ZHAO F Q,LIU J X.Nuclear factor-like factor 2-antioxidant response element signaling activation by tert-butylhydroquinone attenuates acute heat stress in bovine mammary epithelial cells[J].J Dairy Sci,2016,99(11):9094-9103.
[4] SUN J,REN X,SIMPKINS J W.Sequential upregulation of superoxide dismutase 2 and Heme oxygenase 1 by tert-Butylhydroquinone protects mitochondria during oxidative Stress[J].Mol Pharmacol,2015,88(3):437-449.
[5] ZHANG S,TIAN M,LI J,HAN P,HUANG Q,LIU H.Influence of tert butylhydroquinone on the islets function and expression of HO-1 and VEGF in retina of type 2 diabetic rats[J].Chin J Ophthalmol,2016,52(5):373-381.
[6] ZHANG M,LV X Y,LI J,XU Z G,CHEN L.The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model[J].Exp Diabetes Res,2008(6):704045.
[7] SKOVSO S.Modeling type 2 diabetes in rats using high fat diet and streptozotocin[J].J Diabetes Invest,2014,5(4):349-358.
[8] ZHANG Z H,CHEN Q Z,JIANG F,TOWNSEND T A,MAO C J,YOU C Y,et al.Changes in TL1A levels and associated cytokines during pathogenesis of diabetic retinopathy[J].Mol Med Rep,2017,15(2):573-580.
[9] YIN Y,CHEN F,WANG W,WANG H,ZHANG X.Resolvin D1 inhibits inflammatory response in STZ-induced diabetic retinopathy rats:Possible involvement of NLRP3 inflammasome and NF-kappaB signaling pathway[J].Mol Vis,2017,23:242-250.
[10] ZHANG Y,SUN X,ICLI B,FEINBERG M W.Emerging roles for microRNAs in diabetic microvascular disease:Novel targets for therapy[J].Endocr Rev,2017,38(2):145-168.
[11] SIMO-SERVAT O,SIMO R,HERNANDEZ C.Circulating biomarkers of diabetic retinopathy:An overview based on physiopathology[J].J Diabetes Res,2016,2016(3):5263798.
[12] GONG Q,XIE J,LIU Y,LI Y,SU G.Differentially expressed microRNAs in the development of early diabetic retinopathy[J].J Diabetes Res,2017,2017:4727942.
[13] ZHUANG P,MURALEESHARAN C K,XU S.Intraocular delivery of miR-146 inhibits diabetes-induced retinal functional defects in diabetic rat model[J].Invest Ophthalmol Vis Sci,2017,58(3):1646-1655.
[14] TKATCHENKO A V,LUO X,TKATCHENKO T V,VAZ C,TANAVDE V M,MAURER-STROH S,et al.Large-scale microRNA expression profiling identifies putative retinal miRNA-mRNA signaling pathways underlying form-deprivation myopia in mice[J].PLoS One,2016,11(9):e0162541.
[15] YANG Y,SUN B,HUANG J,XU L,PAN J,FANG C,et al.Up-regulation of miR-325-3p suppresses pineal aralkylamine N-acetyltransferase(Aanat) after neonatal hypoxia-ischemia brain injury in rats[J].Brain Res,2017,1668(1):28-35.
[16] LI Z,CAO Y,JIE Z,LIU Y,LI Y,LI J,et al.MiR-495 and miR-551a inhibit the migration and invasion of human gastric cancer cells by directly interacting with PRL-3[J].Cancer Lett,2012,323(1):41-47.
[17] CHEN Z,LIU X,HU Z,WANG Y,LIU M,LIU X,et al.Identification and characterization of tumor suppressor and oncogenic miRNAs in gastric cancer[J].Oncol Lett,2015,10(1):329-336.

相似文献/References:

[1]杜玮 刘子扬 周艳艳 雒雷鸣.糖尿病视网膜病变与血清胆红素水平的关系[J].眼科新进展,2012,32(5):000.
[2]范松涛 卢建民.阿司匹林与糖尿病患者玻璃体出血以及玻璃体切割术疗效的相关性研究[J].眼科新进展,2012,32(11):000.
[3]李艳 李筱荣 袁佳琴 潘斌.糖尿病大鼠视网膜中VEGF、PEDF的表达与血-视网膜屏障损伤[J].眼科新进展,2013,33(1):000.
[4]李朝晖 崔治华 胡晓英 孟丽珠 张敬维.糖尿病视网膜病变激光面积与疗效的分析[J].眼科新进展,2013,33(2):000.
[5]冯冬梅 朱鸿 施彩虹.CXC趋化因子及其受体在糖尿病视网膜病变中的作用[J].眼科新进展,2013,33(6):000.
[6]牛淑玲.糖尿病视网膜病变患者HbAlc、FPG与血小板参数的变化及危险因素分析[J].眼科新进展,2013,33(7):000.
[7]毕春潮 王睿 王建洲 雷春灵 董晓娟 王小莉 薛晓辉.Ad-PEDF对糖尿病视网膜病变大鼠视网膜新生血管的抑制作用[J].眼科新进展,2013,33(8):000.
[8]杨萍 孙书明 李晓鹏.辛伐他汀对糖尿病视网膜病变和炎症因子的影响[J].眼科新进展,2013,33(8):000.
[9]罗文婷 孙大卫.血管黏附蛋白-1在眼科疾病中的研究进展[J].眼科新进展,2013,33(8):000.
[10]李小璐 马雅玲.糖尿病视网膜病变大鼠视网膜VEGF和PEDF的动态表达[J].眼科新进展,2013,33(9):000.
[11]罗云霞,余曦,田敏,等.叔丁基对苯二酚(tBHQ)对2型糖尿病大鼠视网膜的长期保护作用[J].眼科新进展,2021,41(1):032.[doi:10.13389/j.cnki.rao.2021.0007]
 LUO Yunxia,YU Xi,TIAN Min,et al.Long-term protective effect of tert-butyl hydroquinone on the retina of type 2 diabetic rats[J].Recent Advances in Ophthalmology,2021,41(8):032.[doi:10.13389/j.cnki.rao.2021.0007]

备注/Memo

备注/Memo:
四川省应用基础研究项目(编号:14JC0172)
更新日期/Last Update: 2018-08-09