[1]李晨.眼前节分析系统在有效晶状体位置及白内障术后屈光效果预测中的作用[J].眼科新进展,2021,41(10):969-973.[doi:10.13389/j.cnki.rao.2021.0204]
 LI Chen.Research on prediction of effective lens position and refraction status after cataract surgery by anterior segment analysis system[J].Recent Advances in Ophthalmology,2021,41(10):969-973.[doi:10.13389/j.cnki.rao.2021.0204]
点击复制

眼前节分析系统在有效晶状体位置及白内障术后屈光效果预测中的作用/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
41卷
期数:
2021年10期
页码:
969-973
栏目:
应用研究
出版日期:
2021-10-05

文章信息/Info

Title:
Research on prediction of effective lens position and refraction status after cataract surgery by anterior segment analysis system
作者:
李晨
215000 江苏省苏州市,苏州大学附属第一医院眼科
Author(s):
LI Chen
Department of Ophthalmology,the First Affiliated Hospital of Soochow University,Suzhou 215000,Jiangsu Province,China
关键词:
白内障有效晶状体位置绝对屈光误差
Keywords:
cataract effective lens position absolute refractive error
分类号:
R776.1
DOI:
10.13389/j.cnki.rao.2021.0204
文献标志码:
A
摘要:
目的 应用Sirius系统预测有效晶状体位置(ELP),探讨影响ELP变化的因素及对术后屈光效果的影响。方法 对苏州大学附属第一医院行白内障手术的103例(103眼)白内障患者资料进行回顾性分析。用Sirius系统和LS900对患者进行眼部生物学参数测量,用Sirius计算预测晶状体位置(PLP)。术后3个月,用Sirius系统采集的Scheimpflug图像测量ELP。采用Pearson相关性分析和线性回归分析人工晶状体(IOL)实际位置与其他参数的关系。结果 按晶状体位置预测误差(LPPE)分组后,LPPE A组和LPPE B组患者的屈光误差(RE)差异有统计学意义(P<0.001),而绝对屈光误差(ARE)差异无统计学意义(P=0.716)。按年龄分组后,年龄A组、年龄B组、年龄C组患者LPPE整体比较差异有统计学意义(P=0.046);年龄C组与年龄A组患者的LPPE差异有统计学意义(P=0.014)。年龄A组、年龄B组、年龄C组患者术后RE和术后ARE整体比较差异均无统计学意义(均为P>0.05)。按照PLP分组后,PLP A组和 PLP B组患者的LPPE和术后RE差异均有统计学意义(均为P<0.05),而术后ARE差异无统计学意义(P=0.116)。按照前房深度(ACD)分组后,ACD A组和 ACD B组患者的LPPE、术后RE和术后ARE差异均无统计学意义(均为P>0.05)。按照眼轴长度(AL)分组后,短AL组、正常AL组和长AL组患者的LPPE、术后RE和术后ARE整体比较差异均有统计学意义(均为P<0.05);长AL组和正常AL组患者的LPPE、术后RE和术后ARE,以及长AL组和短AL组患者的术后RE和术后ARE差异均有统计学意义(均为P<0.05)。相关性分析结果显示,患者PLP与ELP(r=0.637,P<0.001)、ACD与ELP (r=0.526,P<0.001)、AL与ELP(r=0.505,P<0.001)、术前ACD+晶状体厚度(LT)/2 与ELP (r=0.659,P<0.001)均呈正相关。通过线性回归分析得到改良预测公式:ELP术后=0.485×(ACD术前+LT/2)+0.461×PLP。结论 年龄、PLP、AL、LT等因素对LPPE、术后RE均有影响。改良的回归公式为临床预测ELP和术后RE提供了理论依据。
Abstract:
Objective To predict the effective lens position (ELP) with Sirius system and evaluate the factors influencing the change of ELP and its influence on postoperative refraction status. Methods Retrospective analysis was carried out on 103 cataract patients (103 eyes) from the First Affiliated Hospital of Suzhou University who underwent the cataract surgery. Ocular biometric measurement was conducted with Sirius and LS900. The predicted lens position (PLP) was calculated by Sirius. Three months after the surgery, the Scheimpflug images collected by Sirius were used to measure the ELP. Pearson’s correlation analysis and linear regression analysis were used to determine the correlation between positions of intraocular lens (IOL) and other parameters.Results When grouping according to lens position prediction error (LPPE), there was significant difference in refraction error (RE) between LPPE A group and LPPE B group (P<0.001), but there was no significant difference in absolute refractive error (ARE) (P=0.716). When grouping by age, there was significant difference in LPPE among age group A, age group B and age group C (P=0.046). There was significant difference in LPPE between age group C and age group A (P=0.014). There were no significant differences in postoperative RE and postoperative ARE among age group A, age group B and age group C (both P>0.05). When grouping according to PLP, there were significant differences in LPPE and postoperative RE between PLP group A and PLP group B (both P<0.05); there was no significant difference in postoperative ARE (P=0.116). When grouping according to anterior chamber depth (ACD), there was no significant difference in LPPE, postoperative RE and postoperative ARE between ACD A group and ACD B group (all P>0.05). After grouping according to axial length (AL), there were significant differences in LPPE, postoperative RE and postoperative ARE among short AL group, normal AL group and long AL group (all P<0.05); there were significant differences in LPPE, postoperative RE and postoperative ARE between the long AL group and normal AL group as well as between the long AL group and short AL group (all P<0.05). Correlation analysis showed that PLP and ELP (r=0.637, P<0.001), ACD and ELP (r=0.526, P<0.001), AL and ELP (r=0.505, P<0.001), preoperative ACD + lens thickness (LT)/2 and ELP (r=0.659, P<0.001) were positively correlated. An improved prediction formula was obtained by liner regression analysis: ELPpostoperative= 0.485 ×(ACDpreoperative+LT/2) + 0.461 × PLP. Conclusion Age, PLP, AL, and LT have effects on LPPE and postoperative RE. The improved regression formula provides a theoretical basis for clinical prediction of ELP and postoperative RE.

参考文献/References:

[1] LIU B,XU L,WANG Y X,JONAS J B.Prevalence of cataract surgery and postoperative visual outcome in greater Beijing:the Beijing Eye Study[J].Ophthalmology,2009,116(7):1322-1331.
[2] LUNDSTROM M,BARRY P,HENRY Y,ROSEN P,STENEVI U.Evidence-based guidelines for cataract surgery:guidelines based on data in the European Registry of Quality Outcomes for Cataract and Refractive Surgery database[J].J Cataract Refract Surg,2012,38(6):1086-1093.
[3] NOBBY S.Sources of error in intraocular lens power calculation[J].J Cataract Refract Surg,2008,34(3):368-376.
[4] SAHIN A,HAMRAH P.Clinically relevant biometry[J].Curr Opin Ophthalmol,2012,23(1):47-53.
[5] ZHONG X,LONG E,CHEN W,XIANG W,LIU Z,CHEN H,et al.Comparisons of the in-the-bag stabilities of single-piece and three-piece intraocular lenses for age-related cataract patients:a randomized controlled trial[J].BMC Ophthalmol,2016,16:100.
[6] ERICKSON P.Effects of intraocular lens position errors on postoperative refractive error[J].J Cataract Refract Surg,1990,16(3):305-311.
[7] MASOUD M,LIVNY E,BAHAR I.Repeatability and intrasession reproducibility obtained by the Sirius anterior segment analysis system[J].Eye Contact Lens,2015,41(2):107-110.
[8] HERNANDEZ-CAMARENA J C,CHIRINOS-SALDANA P,NAVAS A,RAMIREZ-MIRANDA A,DE LA MOTA A,JIMENEZ-CORONA A,et al.Repeatability,reproducibility,and agreement between three different Scheimpflug systems in measuring corneal and anterior segment biometry[J].J Refract Surg,2014,30(9):616-621.
[9] ENGREN A L,BEHNDIG A.Anterior chamber depth,intraocular lens position,and refractive outcomes after cataract surgery[J].J Cataract Refract Surg,2013,39(4):572-577.
[10] PLAT J,HOA D,MURA F,BUSETTO T,SCHNEIDER C,PAYEROLS A,et al.Clinical and biometric determinants of actual lens position after cataract surgery[J].J Cataract Refract Surg,2017,43(2):195-200.
[11] EL CHEHAB H,AGARD E,DOT C.Comparison of two biometers:a swept-source optical coherence tomography and an optical low-coherence reflectometry biometer[J].Eur J Ophthalmol,2019,29(5):547-554.
[12] PASSI S F,THOMPSON A C,GUPTA P K.Comparison of agreement and efficiency of a swept source-optical coherence tomography device and an optical low-coherence reflectometry device for biometry measurements during cataract evaluation[J].Clin Ophthalmol,2018,12:2245-2251.
[13] HOFFER K J,HOFFMANN P C,SAVINI G.Comparison of a new optical biometer using swept-source optical coherence tomography and a biometer using optical low-coherence reflectometry[J].J Cataract Refract Surg,2016,42(8):1165-1172.
[14] MELLES R B,HOLLADAY J T,CHANG W J.Accuracy of intraocular lens calculation formulas[J].Ophthalmology,2018,125(2):169-178.
[15] HAYASHI K,HAYASHI H.Comparison of the stability of 1-piece and 3-piece acrylic intraocular lenses in the lens capsule[J].J Cataract Refract Surg,2005,31(2):337-342.
[16] KOEPPL C,FINGL O,KRIECHBAUM K,SACU S,DREXLER W.Change in IOL position and capsular bag size with an angulated intraocular lens early after cataract surgery[J].J Cataract Refract Surg,2005,31(2):348-353.
[17] BEHROUZ M J,KHEIRKHAH A,HASHEMIAN H,NAZARI R.Anterior segment parameters:comparison of 1-piece and 3-piece acrylic foldable intraocular lenses[J].J Cataract Refract Surg,2010,36(10):1650-1655.
[18] MATSUDA H,KATO S,HAYASHI Y,AMANO S,HATTORI T,YUGUCHI T,et al.Anterior capsular contraction after cataract surgery in vitrectomized eyes[J].Am J Ophthalmol,2001,132(1):108-109.
[19] BANG S P,YOO Y S,JUN J H,JOO C K.Effects of residual anterior lens epithelial cell removal on axial position of intraocular lens after cataract surgery[J].J Ophthalmol,2018,2018:9704892.
[20] BUEHL W,STOJANAC D,SACU S,DREXLER W,FINDL O.Comparison of three methods of measuring corneal thickness and anterior chamber depth[J].Am J Ophthalmol,2006,141(1):7-12.
[21] ARAI M,OHZUNO I,ZAKO M.Anterior chamber depth after posterior chamber intraocular lens implantation[J].Acta Ophthalmol (Copenh),1994,72(6):694-697.
[22] XU J,LI C,WANG L,LI C,LI X,LU P.Influence of measurement differences of anterior chamber depth and axial length on lens thickness evaluation in cataract patients:a comparison of two tests[J].BMC Ophthalmol,2020,20(1):481.
[23] OLSEN T,HOFFMANN P.Constant:new concept for ray tracing-assisted intraocular lens power calculation[J].J Cataract Refract Surg,2014,40(5):764-773.
[24] SAVINI G,BEDEI A,BARBONI P,DUCOLI P,HOFFER K J.Intraocular lens power calculation by ray-tracing after myopic excimer laser surgery[J].Am J Ophthalmol,2014,157(1):150-153.
[25] EINIGHAMMER J,OLTRUP T,BENDE T,JEAN B.The individual virtual eye:a computer model for advanced intraocular lens calculation[J].J Optom,2009,2(2):70-82.
[26] TSORBATZOGLOU A,NEMETH G,MATH J,BERTA A.Pseudophakic accommodation and pseudoaccommodation under physiological conditions measured with partial coherence interferometry[J].J Cataract Refract Surg,2006,32(8):1345-1350.
[27] PEREIRA F A S,CRONEMBERGER S.Ultrasound biomicroscopic study of anterior segment changes after phacoemulsification and foldable intraocular lens implantation[J].Ophthalmology,2003,110(9):1799-1806.
[28] JIVRAJKA R V,SHAMMAS M C,SHAMMAS H J.Improving the second-eye refractive error in patients undergoing bilateral sequential cataract surgery[J].Ophthalmology,2012,119(6):1097-1101.
[29] UCAKHAN O O,OZAKAN M,KANPOLAT A.Anterior chamber parameters measured by the Pentacam CES after uneventful phacoemulsification in normotensive eyes[J].Acta Ophthalmol,2009,87(5):544-548.
[30] BAO Y Z,PEI X T,LI M W,LI X X.Late postoperative capsular block syndrome versus liquefied after-cataract[J].J Cataract Refract Surg,2008,34(10):1799-1802.

相似文献/References:

[1]乔建治 张永喜.抗青光眼术后白内障行不同切口超声乳化术的临床疗效分析[J].眼科新进展,2012,32(4):000.
[2]吴星.年龄相关性白内障患者超声乳化手术前后对比敏感度分析[J].眼科新进展,2012,32(6):000.
[3]王勇 叶应嘉 鲍先议 周龑丽 许荣 彭婷婷 曾志富.同轴微小切口超声乳化吸出术在青光眼滤过术后白内障摘出术中的应用[J].眼科新进展,2012,32(7):000.
[4]徐威.注射器针头囊袋内吸附劈核法在白内障手术中的应用[J].眼科新进展,2012,32(7):000.
[5]冉文瑛 陈静 张树利.抗青光眼术后不同角膜切口白内障超声乳化术对角膜屈光状态的影响[J].眼科新进展,2012,32(7):000.
[6]王运.常规连续模式超声乳化术与爆破模式冷超声乳化术治疗白内障的临床疗效比较[J].眼科新进展,2012,32(11):000.
[7]郭照洪 王宏 宋爱平 文译 侯祺 解柳.超声乳化白内障摘出联合人工晶状体植入治疗超高度轴性近视白内障患者的临床疗效[J].眼科新进展,2013,33(1):000.
[8]刘珣 王欣玲 柏全豪 张劲松 阎启昌.IOLMaster与四种人工晶状体屈光度计算公式的准确性研究[J].眼科新进展,2013,33(2):000.
[9]张灿伟 黄旭东 姜雅琴 高婧 孙先勇 张杰 任建涛.α晶状体蛋白抗体与超声乳化术后前房炎症反应的相关性[J].眼科新进展,2013,33(6):000.
[10]唐东永 李霞 梁皓 何剑 谭少健.应用超声生物显微镜观察Bigbag人工晶状体在高度近视眼囊袋内的稳定性[J].眼科新进展,2013,33(6):000.

备注/Memo

备注/Memo:
苏州市“科教兴卫”青年科技项目(编号:KJXW2019008)
更新日期/Last Update: 2021-10-05