[1]殳艳,沈天怡,蔡雯婷,等.不同光谱组成的人工照明对视网膜色素上皮细胞的影响[J].眼科新进展,2023,43(5):352-356.[doi:10.13389/j.cnki.rao.2023.0071]
 SHU Yan,SHEN Tianyi,CAI Wenting,et al.Effects of artificial illumination with different spectrums on the injury of retinal pigment epithelial cells[J].Recent Advances in Ophthalmology,2023,43(5):352-356.[doi:10.13389/j.cnki.rao.2023.0071]
点击复制

不同光谱组成的人工照明对视网膜色素上皮细胞的影响/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
43卷
期数:
2023年5期
页码:
352-356
栏目:
实验研究
出版日期:
2023-05-05

文章信息/Info

Title:
Effects of artificial illumination with different spectrums on the injury of retinal pigment epithelial cells
作者:
殳艳沈天怡蔡雯婷于靖
232001 安徽省淮南市,安徽理工大学(殳艳,于靖);200072 上海市,同济大学附属上海市第十人民医院眼科(沈天怡,蔡雯婷,于靖)
Author(s):
SHU Yan1SHEN Tianyi2CAI Wenting2YU Jing12
1.Anhui University of Science and Technology,Huainan 232001,Anhui Province,China
2.Department of Ophthalmology,Shanghai Tenth People’s Hospital of Tongji University,Shanghai 200072,China
关键词:
视网膜色素上皮细胞全光谱近视防控荧光强度
Keywords:
retinal pigment epithelial cells full spectrum myopia prevention and control fluorescence intensity
分类号:
R778
DOI:
10.13389/j.cnki.rao.2023.0071
文献标志码:
A
摘要:
目的 探讨不同光谱组成的人工照明对视网膜色素上皮(RPE)细胞的影响。
方法 将体外培养的ARPE-19细胞随机分组:无光照对照组、非全光谱照明组(细分为300 lx、600 lx两个亚组)、全光谱照明组(细分为100 lx、300 lx、600 lx、900 lx四个亚组),无光照对照组细胞避光培养,其他组细胞采用相应光谱和光照强度干预。将分组光照24 h、48 h、72 h后的ARPE-19细胞置于倒置荧光显微镜下观察细胞形态变化;CCK-8法检测细胞活力;线粒体膜电位法检测线粒体功能。
结果 光学显微镜下可见,光照72 h后,各组细胞密度明显增大,细胞大小不一,细胞多边形不典型;全光谱照明组细胞较非全光谱照明组细胞形态规整,异形细胞数少。光照24 h后,与无光照对照组相比,非全光谱照明300 lx组,全光谱照明300 lx、600 lx、900 lx组细胞活力均降低(均为P<0.05)。全光谱照明900 lx 组细胞活力高于非全光谱照明300 lx组(P<0.05)。光照48 h后,各组细胞活力较光照24 h时提高;全光谱照明100 lx、300 lx组细胞活力低于非全光谱照明600 lx组(均为P<0.05)。光照72 h后,非全光谱照明300 lx、600 lx组,全光谱照明100 lx、300 lx组细胞活力低于无光照对照组(均为P<0.05);全光谱照明300 lx、600 lx、900 lx组细胞活力高于非全光谱照明300 lx、600 lx组(均为P<0.05)。光照24 h后,非全光谱照明600 lx组ARPE-19细胞线粒体膜电位相对荧光强度低于无光照对照组(P<0.05);全光谱照明100 lx、600 lx、900 lx组ARPE-19细胞线粒体膜电位相对荧光强度高于非全光谱照明600 lx 组(均为P<0.05)。光照48 h后,除全光谱照明100 lx组外,其余各光照组ARPE-19细胞线粒体膜电位相对荧光强度均低于对照组(均为P<0.05);全光谱照明100 lx、600 lx、900 lx组ARPE-19细胞线粒体膜电位相对荧光强度高于非全光谱照明300 lx组(均为P<0.05)。光照72 h后,非全光谱照明300 lx、600 lx组,全光谱照明300 lx组ARPE-19细胞线粒体膜电位相对荧光强度均低于对照组(均为P<0.05);全光谱照明600 lx 组ARPE-19细胞线粒体膜电位相对荧光强度高于非全光谱照明300 lx组(P<0.05);全光谱照明100 lx、600 lx、900 lx组ARPE-19细胞线粒体膜电位相对荧光强度高于非全光谱照明600 lx组(均为P<0.05)。
结论 全光谱照明相对于非全光谱照明对ARPE-19细胞损伤更小。
Abstract:
Objective To investigate the influence of artificial illumination with varying spectrums on the injury of retinal pigment epithelial (RPE) cells.
Methods Adult retinal pigment epithelial cell-19 (ARPE-19 cells) cultured in vitro were randomly divided into the non-light control group, non-full-spectrum illumination group (subdivided into 300 lx and 600 lx subgroups), and full-spectrum illumination group (subdivided into 100 lx, 300 lx, 600 lx and 900 lx subgroups). Cells in the non-light control group were cultured without light, while cells in other groups were interfered with the corresponding spectrum and illumination intensity. After 24 h, 48 h and 72 h, the morphological changes of ARPE-19 cells were observed under an inverted fluorescence microscope, the cell viability was detected by Cell Counting Kit-8, and the mitochondrial function was detected by the mitochondrial membrane potential assay.
Results Under the light microscope, after continuous illumination for 72 h, the cell density of each group increased significantly, with different sizes and untypical shapes; the cell morphology of the full-spectrum illumination group was more regular, and the number of heteromorphic cells was less than that of the non-full-spectrum illumination group. After 24 h, compared with the non-light control group, the cell viability decreased in the 300 lx non-full-spectrum illumination sub-group, 300 lx, 600 lx and 900 lx full-spectrum subgroups (all P<0.05). The cell viability in the 900 lx full-spectrum illumination subgroup was higher than that in the 300 lx non-full-spectrum illumination subgroup (P<0.05). After 48 h, the cell viability of each group was higher than that at 24 h after illumination; the cell viability of the 100 lx and 300 lx full-spectrum illumination subgroups was lower than that of the 600 lx non-full-spectrum illumination sub-group (both P<0.05). After 72 h, the cell viability of 300 lx and 600 lx non-full-spectrum illumination subgroups and 100 lx and 300 lx full-spectrum illumination subgroups was lower than that in the non-light control group (all P<0.05); the cell viability of 300 lx, 600 lx and 900 lx full-spectrum illumination subgroups was higher than that of the 300 lx and 600 lx non-full-spectrum illumination subgroups (all P<0.05). After 24 h, the relative fluorescence intensity of mitochondrial membrane potential of the ARPE-19 cells in the 600 lx non-full-spectrum illumination subgroup was lower than that in the non-light control group (P<0.05), and that in the 100 lx, 600 lx and 900 lx full-spectrum illumination subgroups was higher than the 600 lx non-full-spectrum illumination subgroup (all P<0.05). After 48 h, except for the 100 lx full-spectrum illumination subgroup, the relative fluorescence intensity of mitochondrial membrane potential of the ARPE-19 cells in all illumination groups was lower than that in the non-light control group (all P<0.05), and that in the 100 lx, 600 lx and 900 lx full-spectrum illumination subgroups was higher than the 300 lx non-full-spectrum illumination subgroup (all P<0.05). After 72 h, the relative fluorescence intensity of mitochondrial membrane potential of the ARPE-19 cells in the 300 lx and 600 lx non-full-spectrum illumination subgroups and 300 lx full-spectrum illumination subgroup was lower than that in the non-light control group (all P<0.05), that in the 600 lx full-spectrum illumination subgroup was higher than the 300 lx non-full-spectrum illumination group (P<0.05), and that in the 100 lx, 600 lx and 900 lx full-spectrum illumination subgroups was higher than the 600 lx non-full-spectrum illumination subgroup (all P<0.05).
Conclusion The injury of ARPE-19 cells caused by full-spectrum illumination is less than that caused by non-full-spectrum illumination.

参考文献/References:

[1] LI L,WEN L,LAN W,ZHU H,YANG Z.A novel approach to quantify environmental risk factors of myopia:combination of wearable devices and big data science[J].Transl Vis Sci Technol,2020,9(13):17.
[2] WU P C,CHEN C T,LIN K K,SUN C C,KUO C N,HUANG H M,et al.Myopia prevention and outdoor light intensity in a school-based cluster randomized trial[J].Ophthalmology,2018,125(8):1239-1250.
[3] FELDKAEMPER M,SCHAEFFEL F.An updated view on the role of dopamine in myopia[J].Exp Eye Res,2013,114:106-119.
[4] READ S A,COLLINS M J,VINCENT S J.Light exposure and physical activity in myopic and emmetropic children[J].Optom Vis Sci,2014,91(3):330-341.
[5] 甄毅,黄海阔,汪东生.重视照明光源对眼球屈光发育的调节作用及其在近视眼防控中的应用前景[J].中华眼科医学杂志(电子版),2021,11(2):65-69.
ZHEN Y,HUANG H K,WANG D S.Pay attention to the adjustment effect of illumination light source on eyeball refractive development and its application prospects in the prevention and control of myopia[J].Chin J Ophthalmol Med (Electronic Edition),2021,11(2):65-69.
[6] 宗霞,刘燕,王育良,张传伟.不同光环境对幼兔眼球发育的影响[J].中国医药导报,2016,13(26):4-7.
ZONG X,LIU Y,WANG Y L,ZHANG C W.Effects of different light environments on eyeballs development in immature rabbits[J].Chin Med Herald,2016,13(26):4-7.
[7] 朱彦婷.“时相调节对方”对豚鼠光源性近视化干预的研究[D].南京:南京中医药大学,2020.
ZHU Y T.Effect of “shi xiang yin yang formulas”in diet therapy on light source-induced myopia in guinea pigs[D].Nanjing:Nanjing University of Chinese Medicine,2020.
[8] 陈军,陈友三,王菁菁,杨金柳行,谢辉,杜林琳,等.类太阳光谱LED照明对儿童青少年视网膜血流灌注影响的随机对照临床试验[J].中国学校卫生,2022,43(3):338-340,344.
CHEN J,CHEN Y S,WANG J J,YANG J L X,XIE H,DU L L,et al.Effects of sunlike spectrum LED illumination on retinal blood perfusion in children and adolescents:a randomized controlled trial[J].Chin J School Health,2022,43(3):338-340,344.
[9] 李澜,唐秀平,邹云春,范浩博,杨丽媛,尹西敏.不同光照度的全光谱白光对人体眼轴的短期影响研究[J].四川医学,2020,41(1):24-28.
LI L,TANG X P,ZOU Y C,FAN H B,YANG L Y,YIN X M.Short-term effects of full-spectrum white light with different illuminance on human eye axis[J].Sichuan Med J,2020,41(1):24-28.
[10] 宋敬瑶.抑制内质网应激性自噬对视网膜光损伤保护作用[D].长春:吉林大学,2020.
SONG J Y.Suppressing ER stress-related autophagy attenuates retinal light injury[D].Changchun:Jilin University,2020.
[11] ORGANISCIAK D T,VAUGHAN D K.Retinal light damage:mechanisms and protection[J].Prog Retin Eye Res,2010,29(2):113-134.
[12] SCHRAERMEYER U,KOPITZ J,PETERS S,HENKE-FAHLE S,BLITGEN-HEINECKE P,KOKKINOU D,et al.Tyrosinase biosynthesis in adult mammalian retinal pigment epithelial cells[J].Exp Eye Res,2006,83(2):315-321.
[13] MING M,LI X,FAN X,YANG D,LI L,CHEN S,et al.Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine:possible contribution to therapeutic effects of RPE cell transplantation in Parkinson’s disease[J].J Transl Med,2009,7:53.
[14] 公慧敏,周占宇,牛膺筠,徐静.EPO对氧化损伤的人RPE细胞bcl-2表达的影响[J].眼科研究,2007,25(7):481-484.
GONG H M,ZHOU Z Y,NIU Y J,XU J.Effect of erythropoietin on the expression of bcl-2 in human RPE induced by oxidative in juries[J].Chin Ophthalmol Res,2007,25(7):481-484.
[15] PORTERA-CAILLIAU C,SUNG C H,NATHANS J,ADLER R.Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa[J].Proc Natl Acad Sci USA,1994,91(3):974-978.
[16] 孙敏,吕晓玲.人视网膜色素上皮细胞生长特性及可见光对其影响[J].科技导报,2013,31(5):58-62.
SUN M,L X L.Growth characteristics of human retinal pigment epithelium cells and the influence of visual light on the characteristics[J].Sci Technol Rev,2013,31(5):58-62.
[17] 陈灿,蓝卫忠,林丽霞,王延东,付东,杨智宽.全光谱光照对体外培养的人视网膜色素上皮细胞分泌多巴胺功能的影响[J].中华眼视光学与视觉科学杂志,2011,13(5):328-331.
CHEN C,LAN W Z,LIN L X,WANG Y D,FU D,YANG Z K.Effect of full spectral light irradiation on the dopamine secretion of cultured human retinal Pigment epithelial cells in vitro[J].Chin J Optom Ophthalmol Vis Sci,2011,13(5):328-331.
[18] ROEHLECKE C,SCHALLER A,KNELS L,FUNK R H.The influence of sublethal blue light exposure on human RPE cells[J].Mol Vis,2009,15:1929-1938.
[19] SPARROW J R,CAI B.Blue light-induced apoptosis of A2E-containing RPE:involvement of caspase-3 and protection by Bcl-2[J].Invest Ophthalmol Vis Sci,2001,42(6):1356-1362.
[20] RONO C,OLIVER T R.Near infrared light exposure is associated with increased mitochondrial membrane potential in retinal pigmented epithelial cells[J].Photochem Photobiol Sci,2020,19(10):1455-1459.
[21] FITZGERALD M,HODGETTS S,VAN DEN HEUVEL C,NATOLI R,HART N S,VALTER K,et al.Red/near-infrared irradiation therapy for treatment of central nervous system injuries and disorders[J].Rev Neurosci,2013,24(2):205-226.

相似文献/References:

[1]王毅 李罗翔 李娟 曾庆华.ApoE基因缺失小鼠视网膜及Bruch膜组织形态观察[J].眼科新进展,2013,33(1):000.
[2]王毅 李罗翔 李进辉 李娟 曾庆华.血脂异常ApoE基因缺失小鼠视网膜色素上皮细胞胞浆内黑色素和脂褐素的改变[J].眼科新进展,2013,33(7):000.
[3]李娟娟 李燕.慢性中心性浆液性脉络膜视网膜病变视网膜色素上皮细胞萎缩轨迹的临床观察[J].眼科新进展,2013,33(8):000.
[4]丰慧 周占宇 许广昌 钱诚.氧化损伤对体外培养人视网膜色素上皮细胞PEDF的影响[J].眼科新进展,2008,28(9):000.
[5]赵红梅 于靖 盛敏杰 陈轶卉.胰岛素样生长因子结合蛋白-6对 RPE 细胞增殖和迁移的影响[J].眼科新进展,2012,32(3):000.
[6]张奕霞 杨炜 邱明磊 赵晨.整合素连接激酶对人视网膜色素上皮细胞增殖的影响[J].眼科新进展,2012,32(9):000.
[7]李印 李拓 宋秀胜 李家璋 吴青松 李红艳 贺涛.CD157在RPE细胞中的表达及对细胞迁移、黏附的影响[J].眼科新进展,2012,32(11):000.
[8]唐风雷 朱珊梅 周建强 于忠兴 朱太春 谢秀雯 蒋星 陆人杰.中心性浆液性脉络膜视网膜病变的临床研究与治疗评价[J].眼科新进展,2013,33(11):000.
[9]杨宝娣 宋艳萍 陈中山 丁琴. 微脉冲半导体激光对兔视网膜色素上皮细胞阈值下光凝的光生物调制效应[J].眼科新进展,2014,34(1):005.
[10]李林 徐剑容 王咏针 孙玉莹 李斌. 微小RNA-7对人视网膜色素上皮细胞增生和迁移的影响[J].眼科新进展,2014,34(2):122.

备注/Memo

备注/Memo:
国家自然科学基金青年科学基金项目 (编号:82000903,82101130)
更新日期/Last Update: 2023-05-05