[1]张新霞,王小敏,陆丽红,等.薯蓣皂苷对高糖诱导的视网膜色素上皮细胞损伤的保护作用[J].眼科新进展,2022,42(4):278-283.[doi:10.13389/j.cnki.rao.2022.0056]
 ZHANG Xinxia,WANG Xiaomin,LU Lihong,et al.Protective effect of diosgenin on retinal pigment epithelial cell injury induced by high glucose[J].Recent Advances in Ophthalmology,2022,42(4):278-283.[doi:10.13389/j.cnki.rao.2022.0056]
点击复制

薯蓣皂苷对高糖诱导的视网膜色素上皮细胞损伤的保护作用/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
42卷
期数:
2022年4期
页码:
278-283
栏目:
实验研究
出版日期:
2022-04-05

文章信息/Info

Title:
Protective effect of diosgenin on retinal pigment epithelial cell injury induced by high glucose
作者:
张新霞王小敏陆丽红王保君狄文玉
453100 河南省新乡市,新乡医学院第一附属医院眼科(张新霞,王小敏,陆丽红,王保君);453100 河南省新乡市,新乡医学院第一附属医院病理科(狄文玉)
Author(s):
ZHANG Xinxia1WANG Xiaomin1LU Lihong1WANG Baojun1DI Wenyu2
1.Department of Ophthalmology,the First Affiliated Hospital of Xinxiang Medical University,Xinxiang 453100,Henan Province,China
2.Department of Pathology,the First Affiliated Hospital of Xinxiang Medical University,Xinxiang 453100,Henan Province,China
关键词:
薯蓣皂苷糖尿病视网膜病变视网膜色素上皮细胞高糖氧化应激细胞凋亡
Keywords:
diosgenin diabetic retinopathy retinal pigment epithelium cells high glucose oxidative stress apoptosis
分类号:
R966;R774.1
DOI:
10.13389/j.cnki.rao.2022.0056
文献标志码:
A
摘要:
目的 探讨薯蓣皂苷(Dio)对高糖(HG)诱导的视网膜色素上皮(RPE)细胞损伤的保护作用,并分析其机制。方法 用细胞计数试剂8(CCK-8)法筛选葡萄糖浓度和无细胞毒性的Dio剂量范围。将ARPE-19细胞分为对照组(5 mmol·L-1葡萄糖处理48 h)、模型组(50 mmol·L-1葡萄糖处理48 h)和低、中、高剂量Dio处理组(分别用50 mmol·L-1葡萄糖联合0.5 mmol·L-1 、2.0 mmol·L-1 和8.0 mmol·L-1 Dio处理48 h)。CCK-8法检测细胞活性;FITC标记膜联蛋白-V/碘化丙啶(Annexin V-FITC/PI)染色检测细胞凋亡;荧光探针法检测活性氧(ROS)水平;试剂盒法检测丙二醛(MDA)水平、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px)活性;JC-1染色检测线粒体膜电位;Western blot法检测B细胞淋巴瘤/白血病-2(Bcl-2)、Bcl-2相关X蛋白(Bax)、cleaved Caspase-3和Yes相关蛋白(YAP)的表达水平;免疫荧光法观察YAP的表达。结果 筛选的葡萄糖浓度为50 mmol·L-1,Dio的无细胞毒性的剂量为0.5 mmol·L-1、2.0 mmol·L-1、8.0 mmol·L-1。与对照组比较,模型组细胞活性、线粒体膜电位、CAT和GSH-Px活性以及Bcl-2蛋白和YAP蛋白表达水平均明显降低(均为P<0.001),细胞凋亡水平、ROS和MDA水平以及cleaved Caspase-3蛋白和Bax蛋白表达水平均明显升高(均为P<0.001);与模型组比较,低、中、高剂量Dio处理组细胞活性、线粒体膜电位、CAT和GSH-Px活性以及Bcl-2蛋白和YAP蛋白表达水平均明显升高(均为P<0.05),细胞凋亡水平、ROS和MDA水平以及cleaved Caspase-3蛋白和Bax蛋白表达水平均明显降低,且均呈剂量依赖性(均为P<0.05)。结论 Dio可通过激活YAP信号,降低氧化应激反应和抑制线粒体介导的细胞凋亡途径,进而减轻HG诱导的RPE细胞损伤。
Abstract:
Objective To investigate the protective effect of diosgenin (Dio) on retinal pigment epithelial (RPE) cell injury induced by high glucose (HG), and to analyze its mechanism. Methods Glucose concentration and non-cytotoxic Dio dose range were screened by CCK-8 assay. ARPE-19 cells were divided into the control group (treated with 5 mmol·L-1 glucose for 48 h), model group (treated with 50 mmol·L-1 glucose for 48 h), and low-, medium- and high-dose Dio groups (treated with 50 mmol·L-1 glucose combined with 0.5 mmol·L-1, 2.0 mmol·L-1 and 8.0 mmol·L-1 Dio, respectively for 48 h). Cell viability was detected by CCK-8 assay. Apoptosis was detected by Annexin V-FITC/PI staining. The levels of reactive oxygen species (ROS) were measured by fluorescence probe. The level of malondialdehyde (MDA) and the activity of catalase (CAT) and glutathione peroxidase (GSH-Px) were measured by assay kits. Mitochondrial membrane potential was tested by JC-1 staining. The expression levels of B-cell lymphoma/leukaemia-2 (Bcl-2), Bcl-2-associated X protein (Bax), cleaved Caspase-3 and Yes-associated protein (YAP) were tested by Western blot. The expression of YAP was observed by immunofluorescence.Results The screened glucose concentration was 50 mmol·L-1, and the non-cytotoxic dose range of Dio was 0.5 mmol·L-1, 2.0 mmol·L-1 and 8.0 mmol·L-1. Compared with the control group, cell viability, mitochondrial membrane potential, CAT and GSH-Px activity, Bcl-2 and YAP levels in the model group were significantly decreased (all P<0.001), while apoptosis, ROS and MDA levels, cleaved Caspase-3 and Bax levels were significantly increased (all P<0.001). Compared with the model group, cell viability, mitochondrial membrane potential, CAT and GSH-Px activity, Bcl-2 and YAP levels in low-, medium- and high-dose Dio groups were significantly increased, while apoptosis, ROS and MDA levels, cleaved Caspase-3 and Bax levels were significantly decreased, all in a dose-dependent manner(all P<0.05).Conclusion Dio can reduce HG-induced RPE cell injury by activating YAP signal, reducing oxidative stress response and inhibiting mitochondria-mediated apoptosis pathway.

参考文献/References:

[1] MA Q,LI Y,WANG M,TANG Z,WANG T,LIU C,et al.Progress in metabonomics of type 2 diabetes mellitus [J].Molecules,2018,23(7):1834.
[2] SIM-SERVAT O,HERNNDEZ C,SIM R.Diabetic retinopathy in the context of patients with diabetes [J].Ophthalmic Res,2019,62(4):211-217.
[3] JO D H,YUN J H,CHO C S,KIM J H,KIM J H,CHO C H.Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy[J].Glia,2019,67(2):321-331.
[4] SHI Y,ZHANG Y,LI Y,TONG C.Sauchinone inhibits high glucose-induced oxidative stress and apoptosis in retinal pigment epithelial cells[J].RSC Adv,2019,9(30):17065-17071.
[5] YU L,LU H,YANG X,LI R,SHI J,YU Y,et al.Diosgenin alleviates hypercholesterolemia via SRB1/CES-1/CYP7A1/FXR pathway in high-fat diet-fed rats [J].Toxicol Appl Pharmacol,2021,412:115388.
[6] LIAN Y,WEN D,MENG X,WANG X,LI H,HAO L,et al.Inhibition of invadopodia formation by diosgenin in tumor cells [J].Oncol Lett,2020,20(6):283.
[7] JUNG D H,PARK H J,BYUN H E,PARK Y M,KIM T W,KIM B O,et al.Diosgenin inhibits macrophage-derived inflammatory mediators through downregulation of CK2,JNK,NF-kappa B and AP-1 activation [J].Int Immunopharmacol,2010,10(9):1047-1054.
[8] GAN Q,WANG J,HU J,LOU G,XIONG H,PENG C,et al.The role of diosgenin in diabetes and diabetic complications [J].J Steroid Biochem Mol Biol,2020,198:105575.
[9] MAHMOUDI N,KIASALARI Z,RAHMANI T,SANAIERAD A,AFSHIN-MAJD S,NADERI G,et al.Diosgenin attenuates cognitive impairment in streptozotocin-induced diabetic rats:underlying mechanisms [J].Neuropsychobiology,2021,80(1):25-35.
[10] ROGHANI-DEHKORDI F,ROGHANI M,BALUCHNEJADMOJARAD T.Diosgenin mitigates streptozotocin diabetes-induced vascular dysfunction of the rat aorta:the involved mechanisms [J].J Cardiovasc Pharmacol,2015,66(6):584-592.
[11] LONDZIN P,KISIEL-NAWROT E,KOCIK S,JANAS A,TRAWCZYNSKI M,CEGIELA U,et al.Effects of diosgenin on the skeletal system in rats with experimental type 1 diabetes [J].Biomed Pharmacother,2020,129:110342.
[12] UEMURA T,HIRAI S,MIZOGUCHI N,GOTO T,LEE J Y,TAKETANI K,et al.Diosgenin present in fenugreek improves glucose metabolism by promoting adipocyte differentiation and inhibiting inflammation in adipose tissues [J].Mol Nutr Food Res,2010,54(11):1596-1608.
[13] KISS R,PESTI-ASBTH G,SZARVAS M,STNDL L,CZIKY Z,HEGEDS C,et al.Diosgenin and its fenugreek based biological matrix affect insulin resistance and anabolic hormones in a rat based insulin resistance model [J].Biomed Res Int,2019,2019:7213913.
[14] KANG Q,YANG C.Oxidative stress and diabetic retinopathy:molecular mechanisms,pathogenetic role and therapeutic implications [J].Redox Biol,2020,37:101799.
[15] CHEN Q,TANG L,XIN G,LI S,MA L,XU Y,et al.Oxidative stress mediated by lipid metabolism contributes to high glucose-induced senescence in retinal pigment epithelium [J].Free Radic Biol Med,2019,130:48-58.
[16] BERKOWITZ B A.Preventing diabetic retinopathy by mitigating subretinal space oxidative stress in vivo [J].Vis Neurosci,2020,37:E002.
[17] ZHOU P,XIE W,MENG X,ZHAI Y,DONG X,ZHANG X,et al.Notoginsenoside R1 ameliorates diabetic retinopathy through PINK1-dependent activation of mitophagy [J].Cells,2019,8(3):213.
[18] WU M Y,YIANG G T,LAI T T,LI C J.The oxidative stress and mitochondrial dysfunction during the pathogenesis of diabetic retinopathy [J].Oxid Med Cell Longev,2018,2018:3420187.
[19] TAKAHASHI A,MASUDA A,SUN M,CENTONZE V E,HERMAN B.Oxidative stress-induced apoptosis is associated with alterations in mitochondrial caspase activity and Bcl-2-dependent alterations in mitochondrial pH (pHm) [J].Brain Res Bull,2004,62(6):497-504.
[20] XING W,SONG Y,LI H,WANG Z,WU Y,LI C,et al.Fufang Xueshuantong protects retinal vascular endothelial cells from high glucose by targeting YAP [J].Biomed Pharmacother,2019,120:109470.
[21] HE L,YUAN L,YU W,SUN Y,JIANG D,WANG X,et al.A regulation loop between YAP and NR4A1 balances cell proliferation and apoptosis [J].Cell Rep,2020,33(3):108284.
[22] HUANG Z S,PENG Y H,YU H,YU X,ZHOU J,XIAO J.RhoA protects the podocytes against high glucose-induced apoptosis through YAP and plays critical role in diabetic nephropathy [J].Biochem Biophys Res Commun,2018,504(4):949-956.

相似文献/References:

[1]杜玮 刘子扬 周艳艳 雒雷鸣.糖尿病视网膜病变与血清胆红素水平的关系[J].眼科新进展,2012,32(5):000.
[2]范松涛 卢建民.阿司匹林与糖尿病患者玻璃体出血以及玻璃体切割术疗效的相关性研究[J].眼科新进展,2012,32(11):000.
[3]李艳 李筱荣 袁佳琴 潘斌.糖尿病大鼠视网膜中VEGF、PEDF的表达与血-视网膜屏障损伤[J].眼科新进展,2013,33(1):000.
[4]李朝晖 崔治华 胡晓英 孟丽珠 张敬维.糖尿病视网膜病变激光面积与疗效的分析[J].眼科新进展,2013,33(2):000.
[5]冯冬梅 朱鸿 施彩虹.CXC趋化因子及其受体在糖尿病视网膜病变中的作用[J].眼科新进展,2013,33(6):000.
[6]牛淑玲.糖尿病视网膜病变患者HbAlc、FPG与血小板参数的变化及危险因素分析[J].眼科新进展,2013,33(7):000.
[7]毕春潮 王睿 王建洲 雷春灵 董晓娟 王小莉 薛晓辉.Ad-PEDF对糖尿病视网膜病变大鼠视网膜新生血管的抑制作用[J].眼科新进展,2013,33(8):000.
[8]杨萍 孙书明 李晓鹏.辛伐他汀对糖尿病视网膜病变和炎症因子的影响[J].眼科新进展,2013,33(8):000.
[9]罗文婷 孙大卫.血管黏附蛋白-1在眼科疾病中的研究进展[J].眼科新进展,2013,33(8):000.
[10]李小璐 马雅玲.糖尿病视网膜病变大鼠视网膜VEGF和PEDF的动态表达[J].眼科新进展,2013,33(9):000.

备注/Memo

备注/Memo:
河南省医学科技攻关计划项目(编号:SBGJ2018055)
更新日期/Last Update: 2022-04-05