[1]柯玲玲,周欣,张元钟,等.驻景丸加减方对干性年龄相关性黄斑变性模型小鼠视网膜的保护作用[J].眼科新进展,2021,41(9):812-816.[doi:10.13389/j.cnki.rao.2021.0170]
 KE Lingling,ZHOU Xin,ZHANG Yuanzhong,et al.Protection of modified prescription of Zhujingwan on the retina of mice with dry age-related macular degeneration[J].Recent Advances in Ophthalmology,2021,41(9):812-816.[doi:10.13389/j.cnki.rao.2021.0170]
点击复制

驻景丸加减方对干性年龄相关性黄斑变性模型小鼠视网膜的保护作用/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
41卷
期数:
2021年9期
页码:
812-816
栏目:
实验研究
出版日期:
2021-09-05

文章信息/Info

Title:
Protection of modified prescription of Zhujingwan on the retina of mice with dry age-related macular degeneration
作者:
柯玲玲周欣张元钟刘雨露仲路孙化萍杭丽金青子徐新荣
332000 江西省九江市,九江市中医院眼科(柯玲玲);210029 江苏省南京市,江苏省中医院(南京中医药大学附属医院)眼科(周欣,刘雨露,仲路,孙化萍,杭丽,金青子,徐新荣);210022 江苏省南京市,南京市中医院眼科(张元钟)
Author(s):
KE Lingling1ZHOU Xin2ZHANG Yuanzhong3LIU Yulu2ZHONG Lu2SUN Huaping2HANG Li2JIN Qingzi2XU Xinrong2
1.Department of Ophthalmology,Jiujiang Hospital of Chinese Medicine,Jiujiang 332000,Jiangxi Province,China
2.Department of Ophthalmology,Jiangsu Provincial Hospital of Chinese Medicine (the Affiliated Hospital of Nanjing University of Chinese Medicine),Nanjing 210029,Jiangsu Province,China
3.Department of Ophthalmology,Nanjing Hospital of Chinese Medicine ,Nanjing 210022,Jiangsu Province,China
关键词:
年龄相关性黄斑变性驻景丸加减方氧化损伤Nrf2通路自噬
Keywords:
age-related macular degeneration modified prescription of Zhujingwan oxidative damage Nrf2 pathway autophagy
分类号:
R774.5
DOI:
10.13389/j.cnki.rao.2021.0170
文献标志码:
A
摘要:
目的 探讨驻景丸加减方对干性年龄相关性黄斑变性(AMD)模型小鼠视网膜的保护作用以及对核因子E2相关因子2 (Nrf2)通路和自噬的影响。方法 取6月龄健康雄性C57BL/6小鼠90只,将小鼠随机分为:年龄对照组(正常饮食)、溶媒对照组(高脂饮食+氢醌)、对照药物组(高脂饮食+氢醌+莱视盯)及中药组(高脂饮食+氢醌+驻景丸加减方,分低、中、高三个剂量组)6组,每组15只。莱视盯主要成分:叶黄素、β-胡萝卜素、葡萄糖酸锌 (每100 g含叶黄素 2.20 g、β-胡萝卜素 0.86 g、锌 1.50 g)。各组小鼠灌胃给药,每天1次,持续3个月。动物观察期满处死并摘取眼球,透射电镜观察视网膜组织,测量视网膜色素上皮(RPE)下沉积物面积及Bruch膜厚度,检测视网膜匀浆活性氧自由基(ROS)、丙二醛 (MDA) 含量,Western blot检测Nrf2、血红素加氧酶-1(HO-1)、醌氧化还原酶-1(NQO-1)、p62和LC3蛋白表达水平。结果 与年龄对照组相比,溶媒对照组RPE下沉积物面积显著增大、Bruch膜明显增厚,差异均有统计学意义(均为P<0.01);与溶媒对照组相比,中药中、高剂量组RPE下沉积物面积减小、Bruch膜厚度变薄,差异均有统计学意义(均为P<0.01);与溶媒对照组相比,中药低剂量组和对照药物组RPE下沉积物面积也均减小,差异均有统计学意义(均为P<0.05),但Bruch膜厚度变化不明显。与溶媒对照组相比,中药中、高剂量组ROS、MDA含量显著降低 (均为P<0.01),中药低剂量组和对照药物组ROS、MDA含量也均降低 (均为P<0.05);与溶媒对照组相比,中药中、高剂量组细胞质Nrf2蛋白表达显著下调,细胞核Nrf2蛋白表达上调 (均为P<0.01),中药低剂量组和对照药物组细胞质Nrf2蛋白表达下调,细胞核Nrf2蛋白表达上调 (均为P<0.05);与溶媒对照组相比,中药中、高剂量组HO-1、NQO-1、p62和LC3 II蛋白表达均显著上调 (均为P<0.01),中药低剂量组HO-1、p62和LC3 II蛋白表达均上调 (均为P<0.05),对照药物组HO-1和LC3 II蛋白表达均上调 (均为P<0.05)。结论 驻景丸加减方可激活Nrf2通路,上调下游靶基因酶HO-1、NQO-1表达,快速清除ROS、MDA;增强自噬,加快清除氧化损伤的细胞器,对干性AMD模型小鼠视网膜有保护作用。
Abstract:
Objective To investigate the protective effect of modified prescription of Zhujingwan on the retina of mice with dry age-related macular degeneration (AMD) and the involvements of the nuclear factor E2-related factor 2 (Nrf2) pathway and autophagy.Methods Ninety 6-month-old male C57BL/6 mice were randomly divided into 6 groups: aging control group (normal diet), vehicle control group (high-fat diet+hydroquinone), drug control group (high-fat diet+hydroquinone+Laishiding), and Chinese herbs groups (high-fat diet+hydroquinone+ low, medium and high dose of modified prescription of Zhujingwan), with 15 mice in each group. Main ingredients of Laishiding included 2.20 g lutein, 0.86 g β-carotene, and 1.50 g zinc gluconate per 100 g. Drugs were given once daily through intragastric administration for 3 months. At the end of the experimental period, animals were sacrificed for collecting eyeballs. The sediment area under RPE and Bruch membrane (BrM) thickness were evaluated by electron microscopy. ROS and MDA levels of mouse retina were measured. In addition, protein expressions of Nrf2, heme oxygenase-1 (HO-1), quinone oxidoreductase-1 (NQO-1), p62 and LC3 of mouse retina were detected by Western blot.Results Compared with the aging control group, significantly increased sediment area under RPE and BrM were detected in the vehicle control group (both P<0.01). Compared with the vehicle control group, the sediment area under RPE reduced and the BrM thickness were significantly lower in Chinese herbs groups with the medium and high dose of modified prescription of Zhujingwan (all P<0.01). In addition, the sediment area under RPE also significantly decreased in Chinese herbs group with the low dose of modified prescription of Zhujingwan (P<0.05), while the change of BrM thickness was not obvious. Compared with the vehicle control group, ROS and MDA levels significantly decreased in Chinese herbs group with three doses of modified prescription of Zhujingwan (low dose group: P<0.05, medium and high dose groups: P<0.01). Compared with the vehicle control group, the protein level of Nrf2 was significantly down-regulated in cytoplasm and up-regulated in nucleus in Chinese herbs group with the medium and high doses of modified prescription of Zhujingwan (all P<0.01), and the same trends were observed in the low dose group and positive drug group as well (P<0.05). Protein expressions of HO-1, NQO-1, p62 and LC3 II were up-regulated in Chinese herbs group with the medium and high doses of modified prescription of Zhujingwan (all P<0.01), and those of HO-1, p62 and LC3 II were up-regulated in the low dose group (all P<0.05). Meanwhile, protein levels of HO-1 and LC3 II were up-regulated in positive drug group (P<0.05).Conclusion The modified prescription of Zhujingwan can activate the Nrf2 pathway and up-regulate target genes HO-1 and NQO-1, thus quickly eliminating ROS and MDA. In addition, it also enhances autophagy and accelerates the removal of oxidative damage organelles, and thus plays a protective role in retina of mice with dry age-related macular degeneration.

参考文献/References:

[1] BAKRI S J,THORNE J E,HO A C,EHLERS J P,SCHOENBERGER S D,YEH S,et al.Safety and efficacy of Anti-vascular endothelial growth factor therapies for neovascular Age-Related macular degeneration:a report by the American academy of ophthalmology[J].Ophthalmology,2019,126(1):55-63.
[2] 陈达夫.中医眼科六经法要[M].成都:四川人民出版社,1978:62-71.
CHEN D F.The six meridians of traditional Chinese ophthalmology[M].Chengdu:Sichuan People’s Publishing House,1978:62-71.
[3] 侯艳杰,石方.驻景丸加减在眼底病中的应用[J].中医药学刊,2005,23(3):488,490.
HOU Y J,DAN F.Application of Zhujingwan-Jiajianfang in treatment of the ocular fundus disease[J].Chin Arch Tradit Chin Med,2005,23(3):488,490.
[4] 曹勤,阮瑞强,李恒.中医治疗老年性黄斑变性的疗效观察[J].广西中医药,2003,26(2):18-19.
CAO Q,RUAN R Q,LI H.An observation on the curative effect of traditional Chinese medicine on age-related macular degeneration[J].Guangxi J Tradit Chin Med,2003,26(2):18-19.
[5] 邓亚平,谢学军.驻景丸加减治疗老年性黄斑变性的临床初步观察[J].成都中医药大学学报,1989,12(2):25.
DENG Y P,XIE X J.A clinical observation on the treatment of age-related macular degeneration with Zhujingwan-jiajianfang[J].J Chengdu Univ Tradit Chin Med,1989,12(2):25.
[6] Age-Related Eye Disease Study Research Group.A randomized,placebo-controlled,clinical trial of high-dose supplementation with vitamins C and E,beta carotene,and zinc for age-related macular degeneration and vision loss:AREDS report no.8 [J].Arch Ophthalmol,2001,119(10):1417-1436.
[7] 中华医学会眼科学分会眼底病学组.中国老年性黄斑变性临床诊断治疗路径[J].中华眼底病杂志,2013,29(4):343-355.
Chinese Ophthalmological Society Ocular Fundus Diseases Society.Clinical pathway of age-related macular degeneration in China[J].Chin J Ocul Fundus Dis,2013,29(4):343-355.
[8] ZHAO Z,CHEN Y,WANG J,STERNBERG P,FREEMAN M L,GROSSNIKLAUS H E,et al.Age-related retinopathy in NRF2-deficient mice[J].PLoS One,2011,6(4):e19456.
[9] 杨艳,于海涛,杭丽,丁淑华,徐新荣.槲皮素磷脂复合物激活Nrf2信号通道增强对氧化损伤ARPE-19细胞的保护作用[J].眼科新进展,2016,36(10):923-927,931.
YANG Y,YU H T,HANG L,DING S H,XU X R.Protective effects of quercetin phospholipid complex on oxidative injury in ARPE-19 cells associated with activation of Nrf2 pathway[J].Rec Adv Ophthalmol,2016,36(10):923-927,931.
[10] SHAO Y,YU H,YANG Y,LI M,HANG L,XU X.A solid dispersion of quercetin shows enhanced Nrf2 activation and protective effects against oxidative injury in a mouse model of dry Age-Related macular degeneration[J].Oxid Med Cell Longev,2019,2019:1479571.
[11] 何志坚,施旻,刘海云.菟丝子提取物对D-半乳糖所致衰老小鼠的抗衰老作用[J].中国老年学杂志,2015,35(19):5444-5446.
HE Z J,SHI M,LIU H Y.Anti-aging effects of Cuscuta chinensis extract in D-galactose induced aging mice[J].Chin J Gerontol,2015,35(19):5444-5446.
[12] 祁小妮,隋英,李振亮,党金宁,刘瑞林.响应曲面优化菟丝子多糖提取工艺及抗氧化活性研究[J].中国酿造,2015,34(8):35-38.
QI X N,SUI Y,LI Z L,DANG J N,LIU R L.Optimization of polysaecharide extraction technology from Cuscuta chincnsis by response surface methodology and its antioxidant activity[J].Chin Brew,2015,34(8):35-38.
[13] 胡华平,韩雅莉,张峰.木瓜提取物抗氧化性质的初步研究[J].食品科学,2008,29(12):645-648.
HU H P,HAN Y L,ZHANG F.Preliminary study on antioxidation effects of Chaenomeles sinensis fruit extracts[J].Food Sci,2008,29(12):645-648.
[14] 高鹏飞,尹爱武,田润,麻黎伟,陈婷.山楂多酚类物质的提取及其抗氧化活性研究[J].安徽农业科学,2012,40(19):10276-10278.
GAO P F,YIN A W,TIAN R,MA L W,CHEN T.Extraction technology of polyphenols in Crataegus pinnatifida and its antioxidant activity[J].J Anhui Agric Sci,2012,40(19):10276-10278.
[15] 黄积武,李创军,杨敬芝,马洁,张东明.三七叶的化学成分及其抗氧化活性研究[J].中草药,2017,48(21):4381-4386.
HUANG J W,LI C J,YANG J Z,MA J,ZHANG D M.Chemical constituents from leaves of Panax notoginseng and anti-oxidant activity[J].Chin Tradit Herbal Drugs,2017,48(21):4381-4386.
[16] LI R,JIA Z,ZHU H.Regulation of Nrf2 signaling[J].React Oxyg Species (Apex),2019,8(24):312-322.
[17] FREDE K,EBERT F,KIPP A P,SCHWERDTLE T,BALDERMANN S.Lutein activates the transcription factor Nrf2 in human retinal pigment epithelial cells[J].J Agric Food Chem,2017,65(29):5944-5952.
[18] KAARNIRANTA K,TOKARZ P,KOSKELA A,PATERNO J,BLASIAK J.Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration[J].Cell Biol Toxicol,2017,33(2):113-128.
[19] LI L L,TAN J,MIAO Y Y,LEI P,ZHANG Q.ROS and autophagy:interactions and molecular regulatory mechanisms[J].Cell Mol Neurobiol,2015,35(5):615-621.
[20] CHANG C C,HUANG T Y,CHEN H Y,HUANG T C,LIN L C,CHANG Y J,et al.Protective effect of melatonin against oxidative stress-induced apoptosis and enhanced autophagy in human retinal pigment epithelium cells[J].Oxid Med Cell Longev,2018,2018:9015765.

相似文献/References:

[1]范姜砾 王雨生 张鹏.湿性年龄相关性黄斑变性患者血浆中相关抗氧化酶水平测定[J].眼科新进展,2012,32(5):000.
[2]王毅 李罗翔 李娟 曾庆华.ApoE基因缺失小鼠视网膜及Bruch膜组织形态观察[J].眼科新进展,2013,33(1):000.
[3]徐新荣 仲路 黄冰林 魏源华 周欣 王玲 王富强.年龄相关性黄斑变性血浆蛋白质组学初步研究[J].眼科新进展,2013,33(2):000.
[4]党亚龙 陈彬川 穆雅林 赵满丽 朱豫.i-MP对产生2型脉络膜新生血管的年龄相关性黄斑变性患者视力及黄斑厚度的影响[J].眼科新进展,2013,33(2):000.
[5]王毅 李罗翔 李进辉 李娟 曾庆华.血脂异常ApoE基因缺失小鼠视网膜色素上皮细胞胞浆内黑色素和脂褐素的改变[J].眼科新进展,2013,33(7):000.
[6]罗文婷 孙大卫.血管黏附蛋白-1在眼科疾病中的研究进展[J].眼科新进展,2013,33(8):000.
[7]陆秉文 吴星伟.光动力疗法治疗年龄相关性黄斑变性的研究进展[J].眼科新进展,2013,33(4):000.
[8]栾兰 姚勇.湿性年龄相关性黄斑变性的治疗进展[J].眼科新进展,2013,33(4):000.
[9]胡艳红 祁明信 郭娜 陈胜 柯发杰.渗出型年龄相关性黄斑变性患者外周血CCR3的表达[J].眼科新进展,2013,33(11):000.
[10]金鑫,张红.MicroRNA在年龄相关性黄斑变性发病中的作用[J].眼科新进展,2014,34(8):787.[doi:10.13389/j.cnki.rao.2014.0218]
 JIN Xin,ZHANG Hong.Role of microRNA in pathogenesis of agerelated macular degeneration[J].Recent Advances in Ophthalmology,2014,34(9):787.[doi:10.13389/j.cnki.rao.2014.0218]

备注/Memo

备注/Memo:
国家自然科学基金资助(编号:82074177);江苏省重点研发计划项目(编号:BE2018757)
更新日期/Last Update: 2021-09-05