[1]邵珺,王杨宁致,詹鹏飞.高糖环境下lncRNA MEG3对人视网膜血管内皮细胞增殖和迁移的作用及其机制[J].眼科新进展,2021,41(7):621-627.[doi:10.13389/j.cnki.rao.2021.0128]
 SHAO Jun,WANGYANG Ningzhi,ZHAN Pengfei.Effects of lncRNA MEG3 on the growth and migration of human retinal microvascular endothelial cells under high glucose environment and its mechanisms[J].Recent Advances in Ophthalmology,2021,41(7):621-627.[doi:10.13389/j.cnki.rao.2021.0128]
点击复制

高糖环境下lncRNA MEG3对人视网膜血管内皮细胞增殖和迁移的作用及其机制/HTML
分享到:

《眼科新进展》[ISSN:1003-5141/CN:41-1105/R]

卷:
41卷
期数:
2021年7期
页码:
621-627
栏目:
实验研究
出版日期:
2021-07-05

文章信息/Info

Title:
Effects of lncRNA MEG3 on the growth and migration of human retinal microvascular endothelial cells under high glucose environment and its mechanisms
作者:
邵珺王杨宁致詹鹏飞
214023 江苏省无锡市,南京医科大学附属无锡市人民医院眼科
Author(s):
SHAO JunWANGYANG NingzhiZHAN Pengfei
Department of Ophthalmology, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu Province, China
关键词:
糖尿病视网膜病变长链非编码RNAlncRNA MEG3miR-223-3pPABPC1
Keywords:
diabetic retinopathylong non-coding RNAlncRNA MEG3miR-223-3pPABPC1
分类号:
R774
DOI:
10.13389/j.cnki.rao.2021.0128
文献标志码:
A
摘要:
目的 探讨高糖环境下lncRNA MEG3对人视网膜血管内皮细胞(hRECs)生长的作用及其机制。方法 采用qRT-PCR检测高糖和正常环境下hRECs中lncRNA MEG3的表达;构建lncRNA MEG3过表达质粒及沉默质粒,利用CCK-8法、Transwell实验以及划痕实验检测lncRNA MEG3对hRECs增殖、愈合及迁移能力的影响。利用双荧光素酶报告基因实验验证lncRNA MEG3和miR-223-3p的靶向结合,并外加miR-223-3p观察对lncRNA MEG3过表达的作用。Western blot检测lncRNA MEG3对hRECs中FBXW7蛋白表达的影响。过表达或沉默PABPC1后,利用qRT-PCR检测hRECs中lncRNA MEG3表达水平。结果 与正常培养环境相比,高糖环境下hRECs中lncRNA MEG3表达下降(F=73.613,P=0.001)。CCK-8法检测发现,lncRNA MEG3过表达可显著降低hRECs增殖,而miR-223-3p的添加可逆转这一现象;划痕实验结果显示,lncRNA MEG3过表达(高糖)组hRECs愈合速度显著低于过表达对照(高糖)组(F=121.193,P<0.001);lncRNA MEG3沉默(高糖)组hRECs愈合速度略高于lncRNA MEG3沉默对照(高糖)组,但两者差异无统计学意义(F=0.689,P=0.453);miR-223-3p可显著降低lncRNA MEG3过表达对hRECs愈合能力的抑制(F=110.016,P<0.001)。Transwell实验结果显示,lncRNA MEG3过表达(高糖)组hRECs迁移能力显著低于过表达对照(高糖)组(F=22.407,P=0.009);lncRNA MEG3沉默(高糖)组hRECs迁移能力显著高于lncRNA MEG3沉默对照(高糖)组(F=17.093,P=0.014);miR-223-3p可显著降低lncRNA MEG3过表达对hRECs迁移能力的抑制(F=33.338,P=0.004)。在双荧光素酶报告基因实验中,共转染miR-223-3p后,突变型 lncRNA MEG3(位点1和位点2)的荧光素酶活性均显著下降(野生型:F=66.691,P=0.001;突变位点1:F=58.657,P=0.002;突变位点2:F=29.104,P=0.006)。Western blot检测结果显示,过表达lncRNA MEG3后,hRECs中FBXW7蛋白的相对表达量明显升高(F=185.443,P<0.001),而miR-223-3p的添加逆转了这一趋势(F=162.257,P<0.001)。沉默了PABPC1后,hRECs中lncRNA MEG3相对表达水平显著下降(F=145.293,P<0.001),而PABPC1基因的过表达则导致hRECs中lncRNA MEG3相对表达水平上调(F=70.638,P=0.001)。结论 在高糖环境下,lncRNA MEG3 通过与miR-223-3p的直接相互作用调控下游的相关靶点,抑制hRECs增殖与迁移;而其上游的调控元件可能为PABPC1。
Abstract:
Objective To explore the mechanism of lncRNA MEG3 on the growth of human retinal endothelial cells (hRECs) under high glucose.Methods The level of lncRNA MEG3 was detected using qRT-PCR in high glucose group and normal group. Overexpression and silent plasmids of lncRNA MEG3 were conducted. The proliferation, migration, and wound healing of hRECs in different groups were measured by cell counting Kit-8 (CCK-8) assay, Transwell assay and scarification test. Luciferase reporter genes were used to detect the target interaction between lncRNA MEG3 and miR-223-3p, and the effect of additional miR-223-3p on the overexpression of lncRNA MEG3 was also investigated. Western blot analysis was used to reveal the effect of lncRNA MEG3 on the protein expression level of FBXW7. The level of lncRNA MEG3 was detected by qRT-PCR after polyadenylate-binding protein cytoplasmic 1 (PABPC1) was overexpressed or silenced.Results Compared with cells cultured in normal environment, the expression level of lncRNA MEG3 in hRECs was decreased in high glucose environment (F=73.613,P=0.001). In CCK-8 assay, overexpression of lncRNA MEG3 significantly repressed the proliferation of hRECs in high glucose environment, while co-transfected miR-223-3p rescued this phenomenon. In wound healing assay, the wound healing process of hRECs in lncRNA MEG3 overexpressed group (high glucose) was significantly lower than that in overexpression control group (high glucose) (F=121.193, P<0.001), while that of the lncRNA- MEG3 silencing group (high glucose) was slight higher than silencing control group (high glucose) (F=0.689,P=0.453); miR-223-3p could significantly reduce the inhibition of the wound healing of hRECs induced by overexpression of lncRNA MEG3 (F=110.016,P<0.001). In transwell assays, the migration of hRECs of lncRNA MEG3 overexpression group (high glucose) was significantly lower than overexpression control group (high glucose) (F=22.407,P=0.009); the migration of hRECs of lncRNA MEG3 silencing group (high glucose) was significantly higher than silencing control group (high glucose) (F=17.093,P=0.014); miR-223-3p could significantly reduce the inhibition of the migration of hRECs induced by the overexpression of lncRNA MEG3 (F=33.338,P=0.004). Inluciferase reporter gene assays, after co-transfected with miR-223-3p, the luciferase activities of wild type and single-site (site 1 and site 2) mutated lncRNA MEG3 were significantly decreased (wild type:F=66.691,P=0.001;site 1:F=58.657,P=0.002;site 2:F=29.104,P=0.006). In Western blot assay, overexpressed lncRNA MEG3 promoted the protein level of FBXW7 (F=185.443,P<0.001), while co-transfected mir-223-3p reversed it (F=162.257, P<0.001). The knocked-down of PABPC1 reduced the relative expression level of lncRNA MEG3 (F=145.293,P<0.001), while the overexpression of PABPC1 promoted the relative expression level of lncRNA MEG3 (F=70.638,P=0.001).Conclusion In hyperglycemia, lncRNA MEG3 can regulate the downstream targets by direct interaction with mir-223-3p, thus repressing the proliferation and migration of hRECs; and the upstream fact of lncRNA MEG3 may be PABPC1.

参考文献/References:

[1] WONG T Y,CHEUNG C M G,LARSEN M,SHARMA S,SIMO R.Diabetic retinopathy [J].Nat Rev Dis Primers,2016,2:16012.
[2] KEICK T W,BRESSLER N M.Recent clinically relevant highlights from the diabetic retinopathy clinical research network [J].Curr Opin Ophthalmol,2018,29 (3):199-205.
[3] MANSOUR S E,BROWING D J,WONG K,FLYNN H W Jr,BHAVSAR A R.The evolving treatment of diabetic retinopathy [J].Clin Ophthalmol,2020,14:653-678.
[4] CHAKRAVARTHY H,DEVANATHAN V.Molecular mechanisms mediating diabetic retinal neurodegeneration:potential research avenues and therapeutic targets [J].J Mol Neurosci,2018,66(3):445-461.
[5] BOON R A,JAE N,HOLDT L.Long noncoding RNAs:from clinical genetics to therapeutic targets ? [J].J Am Coll Cardiol,2016,67(10):1214-1226.
[6] LAPIERRE M P,STOFFEL M.MicroRNAs as stress regulators in pancreatic beta cells and diabetes [J].Mol Metab,2017,6(9):1010-1023.
[7] GONG Q,SU G.Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy [J].Biosci Rep,2017,37(6):BSR20171157.
[8] YAN B,TAO Z F,LI X M,ZHANG H,YAO J,JIANG Q.Aberrant expression of long noncoding RNAs in early diabetic retinopathy [J].Invest Ophthalmol Vis Sci,2014,55(2):941-951.
[9] TORAIH E A,ABDELGHANY A A,FADEAL N M A,AGEELI E A,FAWZY M S.Deciphering the role of circulating lncRNAs:RNCR2,NEAT2,CDKN2B-AS1,and PVT1 and the possible prediction of anti-VEGF treatment outcomes in diabetic retinopathy patients [J].Graefes Arch Clin Exp Ophthalmol,2019,257(9):1897-1913.
[10] QIU G Z,TIAN W,FU H T,LI C P,LIU B.Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction [J].Biochem Bioph Res Commun,2016,471:135-141.
[11] ZHANG Y,LIU X,BAI X,LIN Y,LI Z,FU J B,et al.Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis [J].J Pineal Res,2018,64:e12449.
[12] SHAO J,FAN G M,YIN X W,GU Y,WANG X L,XIN Y,et al.A novel transthyretin /STAT4 /miR-223-3p /FBXW7 signaling pathway affects neovascularization in diabetic retinopathy [J].Mol Cell Endocrinol,2019,498:110541.
[13] SABANAYAGAM C,BAMU R,CHEE M L,LEE R,WANG Y X,TAN G,et al.Incidence and progression of diabetic retinopathy:A systematic review [J].Lancet Diabetes Endocrinol,2019,7(2):140-149.
[14] WU Z,LIU X,LIU L,DENG H L,ZHANG J J,XU Q,et al.Regulation of lncRNA expression [J].Cell Mol Biol Lett,2014,19(4):561-575.
[15] XIE Q X,LIN S N,ZHENG M J,CAI Q T,TU Y.Long noncoding RNA NEAT1 promoted the growth of cervical cancer cells via sponging miR-9-5p [J].Biochem Cell Biol,2019,97(2):100-108.
[16] MICHALIK K M,YOU X,MANAVSKI Y,DODDABALLAPUR A, ZRNIG M,BRAUN T,et al.Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth [J].Circ Res,2014,114(9):1389-1397.
[17] XIAO W,CHEN X,HE M.Inhibition of the jagged/notch pathway inhibits retinoblastoma cell proliferation via suppressing the PI3K/Akt,Src,p38MAPK and Wnt/β-catenin signaling pathways [J].Mol Med Rep,2014,10(1):453-458.
[18] ZHANG H,SHENG C,YIN Y,WEN S,YANG G P,CHENG Z N,et al.PABPC1 interacts with AGO2 and is responsible for the microRNA mediated gene silencing in high grade hepatocellular carcinoma [J].Cancer Lett,2015,367(1):49-57.
[19] STUPFLER B,BIRCK C,SRAPHIN B,MAUXION B.BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation [J].Nat Commun,2016,7:10811.
[20] PENG Y Z,YUAN J J,ZHANG Z C,CHANG X.Cytoplasmic poly(A)-binding protein 1 (PABPC1) interacts with the RNA-binding protein hnRNPLL and thereby regulates immunoglobulin secretion in plasma cells [J].J Biol Chem,2017,292 (29):12285-12295.

相似文献/References:

[1]杜玮 刘子扬 周艳艳 雒雷鸣.糖尿病视网膜病变与血清胆红素水平的关系[J].眼科新进展,2012,32(5):000.
[2]范松涛 卢建民.阿司匹林与糖尿病患者玻璃体出血以及玻璃体切割术疗效的相关性研究[J].眼科新进展,2012,32(11):000.
[3]李艳 李筱荣 袁佳琴 潘斌.糖尿病大鼠视网膜中VEGF、PEDF的表达与血-视网膜屏障损伤[J].眼科新进展,2013,33(1):000.
[4]李朝晖 崔治华 胡晓英 孟丽珠 张敬维.糖尿病视网膜病变激光面积与疗效的分析[J].眼科新进展,2013,33(2):000.
[5]冯冬梅 朱鸿 施彩虹.CXC趋化因子及其受体在糖尿病视网膜病变中的作用[J].眼科新进展,2013,33(6):000.
[6]牛淑玲.糖尿病视网膜病变患者HbAlc、FPG与血小板参数的变化及危险因素分析[J].眼科新进展,2013,33(7):000.
[7]毕春潮 王睿 王建洲 雷春灵 董晓娟 王小莉 薛晓辉.Ad-PEDF对糖尿病视网膜病变大鼠视网膜新生血管的抑制作用[J].眼科新进展,2013,33(8):000.
[8]杨萍 孙书明 李晓鹏.辛伐他汀对糖尿病视网膜病变和炎症因子的影响[J].眼科新进展,2013,33(8):000.
[9]罗文婷 孙大卫.血管黏附蛋白-1在眼科疾病中的研究进展[J].眼科新进展,2013,33(8):000.
[10]李小璐 马雅玲.糖尿病视网膜病变大鼠视网膜VEGF和PEDF的动态表达[J].眼科新进展,2013,33(9):000.
[11]郎海波,黄敏丽.长链非编码RNA在糖尿病视网膜病变发展及治疗中的研究进展[J].眼科新进展,2019,39(5):482.[doi:10.13389/j.cnki.rao.2019.0111]
 LANG Hai-Bo,HUANG Min-Li.Research progress of lncRNA in the development and treatment of diabetic retinopathy[J].Recent Advances in Ophthalmology,2019,39(7):482.[doi:10.13389/j.cnki.rao.2019.0111]
[12]王中原,孙劲禹,谢田华,等.长链非编码RNA在糖尿病视网膜病变发病机制中的作用[J].眼科新进展,2020,40(5):487.[doi:10.13389/j.cnki.rao.2020.0112]
 WANG Zhongyuan,SUN Jinyu,XIE Tianhua,et al.Research progress on role of lncRNA in diabetic retinopathy[J].Recent Advances in Ophthalmology,2020,40(7):487.[doi:10.13389/j.cnki.rao.2020.0112]
[13]邱煜焱,杨旭,苟文军,等.2型糖尿病患者血清lncRNA MALAT1表达水平与视网膜病变的关系[J].眼科新进展,2022,42(12):971.[doi:10.13389/j.cnki.rao.2022.0199]
 QIU Yuyan,YANG Xu,GOU Wenjun,et al.Relationship between the expression level of long non-coding ribonucleic acid metastasis associated lung adenocarcinoma transcript 1 in serum and retinopathy in patients with type 2 diabetes mellitus[J].Recent Advances in Ophthalmology,2022,42(7):971.[doi:10.13389/j.cnki.rao.2022.0199]
[14]王艳平,刘含军.长链非编码RNA(LncRNA)母系表达基因3(MEG3)对糖尿病视网膜病变大鼠模型视网膜血管内皮细胞凋亡的影响[J].眼科新进展,2023,43(1):018.[doi:10.13389/j.cnki.rao.2023.0004]
 WANG Yanping,LIU Hanjun.Effect of long non-coding ribonucleic acid maternally expressed gene 3 on retinal vascular endothelial cell apoptosis in rats with diabetes retinopathy[J].Recent Advances in Ophthalmology,2023,43(7):018.[doi:10.13389/j.cnki.rao.2023.0004]

备注/Memo

备注/Memo:
国家自然科学基金项目(编号:81970819);无锡市双百拔尖人才(编号:2020012);中国博士后 67批面上项目(编号:2020M671541)
更新日期/Last Update: 2021-07-05